Level of significance, Applied Statistics

Assignment Help:

Level of Significance: α

The main purpose of hypothesis testing is not to question the computed value of the sample statistic, but to make judgment about the difference between the sample statistic and a hypothesized population parameter. The next step after stating the Null and Alternative Hypotheses, is to decide what criterion to be used for deciding whether to accept or reject the null hypothesis.

When we choose 5% level of significance in a test procedure, there are about 5 cases in 100 that we would reject the hypothesis when it should be accepted, that is, we are about 95% confident that we have made the right decision. Similarly, if we choose 1% level of significance in testing a hypothesis, then there is only 1 case in 100 that we would reject the hypothesis when it should be accepted.

Suppose, that under a given hypothesis the sampling distribution of a statistic θ is approximately a normal distribution with mean

E (θ) and standard deviation (Standard Error) σθ

Figure 

1879_level of significance.png

 

Then z = 2357_level of significance1.png

is called the standardized normal variable or z-score, and its distribution is the standardized normal distribution with mean 0 and standard deviation 1, the graph of which is shown above.

From the above figure, we see that if the test statistic z of a sample statistic  θ lies between -1.96 and 1.96, then we are 95% confident that the hypothesis is true [since the area under the normal curve between z = -1.96 and z  = 1.96 is 0.95 which is 95% of the total area].

But if for a simple random sample we find that the test statistic (or z-score) z lies outside the range -1.96 to 1.96, i.e. if z  > 1.96, we would say that such an event could happen with probability of only 0.05 (total shaded area in the above figure if the given hypothesis were true). In this case, we say that z-score differed significantly from the value expected under the hypothesis and hence, the hypothesis is to be rejected at 5% (or 0.05) level of significance. Here the total shaded area 0.05 in the above figure represents the probability of being wrong in rejecting the hypothesis. Thus if z  > 1.96, we say that the hypothesis is rejected at a 5% level of significance.

The set of z scores outside the range -1.96 and 1.96, constitutes the critical region or region of rejection of the hypothesis or the region of significance. Thus critical region is the area under the sampling distribution in which the test statistic value has to fall for the null hypothesis to be rejected. On the other hand, the set of z scores inside the range -1.96 to 1.96 is called theregion of acceptance of the hypothesis. The values -1.96 and 1.96 are called critical values at 5% level of significance.

From the above discussion we can formulate the following rule of decision:

Decision Rule (Two-Sided Tests)

Significant level

z Value

Decision

5%

5%

1%

1%

| z |  > 1.96

| z |  < 1.96

| z |  > 2.58

| z |  < 2.58

Reject

Accept

Reject

Accept                                              

 


Related Discussions:- Level of significance

Correlation - cause and effect, Cause and Effect Even a highly signifi...

Cause and Effect Even a highly significant correlation does not necessarily mean that a cause and effect relationship exists between the two variables. Thus, correlation does

Correlation coefficient, Consider three stocks A, B and C costing $100 each...

Consider three stocks A, B and C costing $100 each. The annual returns on the three stocks have mean $5 and variance $10. a. Suppose that the returns on the three stocks are i.i

Z-score of a student, A study was designed to investigate the effects of tw...

A study was designed to investigate the effects of two variables - (1) a student's level of mathematical anxiety and (2) teaching method - on a student's achievement in a mathemati

Small sample test for mean, If the sample size is less than 30, then we nee...

If the sample size is less than 30, then we need to make the assumption that X (the volume of liquid in any cup) is normally distributed. This forces    (the mean volume in the sam

Difference between correlation and regression analysis, Difference between ...

Difference between Correlation and Regression Analysis 1. Degree and Nature  of Relationship: Coefficient of correlation measures   the degree  of covariance  between two vari

Control chart, construction of control chart,n chart

construction of control chart,n chart

Calculate mean and standard deviation, Select and generate your assignment ...

Select and generate your assignment portfolio. The S&P/ASX 200 index is comprised of several sub-indices, including the following: 0) XPJ: The S&P/ASX 200 A-REIT Index 1) XDJ

Determine percent of population in city - bayes theoram, (1) Assume we cat...

(1) Assume we categorize voters in a city as havingless educationand those havingmoreeducation. Those with less education have less than a college degree; those with more education

Time series, merits and demerits of methods to determin trends

merits and demerits of methods to determin trends

Its a portfolio assignment, i m doing MBA in singapore and i want a good wo...

i m doing MBA in singapore and i want a good work. i want a data for 200 observations and then answers for some questions. and i need the data to be approved by our professor first

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd