Level of significance, Applied Statistics

Assignment Help:

Level of Significance: α

The main purpose of hypothesis testing is not to question the computed value of the sample statistic, but to make judgment about the difference between the sample statistic and a hypothesized population parameter. The next step after stating the Null and Alternative Hypotheses, is to decide what criterion to be used for deciding whether to accept or reject the null hypothesis.

When we choose 5% level of significance in a test procedure, there are about 5 cases in 100 that we would reject the hypothesis when it should be accepted, that is, we are about 95% confident that we have made the right decision. Similarly, if we choose 1% level of significance in testing a hypothesis, then there is only 1 case in 100 that we would reject the hypothesis when it should be accepted.

Suppose, that under a given hypothesis the sampling distribution of a statistic θ is approximately a normal distribution with mean

E (θ) and standard deviation (Standard Error) σθ

Figure 

1879_level of significance.png

 

Then z = 2357_level of significance1.png

is called the standardized normal variable or z-score, and its distribution is the standardized normal distribution with mean 0 and standard deviation 1, the graph of which is shown above.

From the above figure, we see that if the test statistic z of a sample statistic  θ lies between -1.96 and 1.96, then we are 95% confident that the hypothesis is true [since the area under the normal curve between z = -1.96 and z  = 1.96 is 0.95 which is 95% of the total area].

But if for a simple random sample we find that the test statistic (or z-score) z lies outside the range -1.96 to 1.96, i.e. if z  > 1.96, we would say that such an event could happen with probability of only 0.05 (total shaded area in the above figure if the given hypothesis were true). In this case, we say that z-score differed significantly from the value expected under the hypothesis and hence, the hypothesis is to be rejected at 5% (or 0.05) level of significance. Here the total shaded area 0.05 in the above figure represents the probability of being wrong in rejecting the hypothesis. Thus if z  > 1.96, we say that the hypothesis is rejected at a 5% level of significance.

The set of z scores outside the range -1.96 and 1.96, constitutes the critical region or region of rejection of the hypothesis or the region of significance. Thus critical region is the area under the sampling distribution in which the test statistic value has to fall for the null hypothesis to be rejected. On the other hand, the set of z scores inside the range -1.96 to 1.96 is called theregion of acceptance of the hypothesis. The values -1.96 and 1.96 are called critical values at 5% level of significance.

From the above discussion we can formulate the following rule of decision:

Decision Rule (Two-Sided Tests)

Significant level

z Value

Decision

5%

5%

1%

1%

| z |  > 1.96

| z |  < 1.96

| z |  > 2.58

| z |  < 2.58

Reject

Accept

Reject

Accept                                              

 


Related Discussions:- Level of significance

Find a nash equilibrium, 2 bidders have identical valuations of an object f...

2 bidders have identical valuations of an object for sale. The value of the object is either 0; 50 or 100, with equal probabilities. The object is allocated to one of the bidders i

Circul;atory ststistics Lab, What statistics can be obtained from a circula...

What statistics can be obtained from a circulatory lab?

Type of variable in regression analysis, Type of Variable in Regression Ana...

Type of Variable in Regression Analysis There are two types of variable in regression analysis. These are: a.      Dependent variable b.      Independent variable

Pneumatic actuator design matrix, Pneumatic Actuator Design Matrix: The ra...

Pneumatic Actuator Design Matrix: The range of actuator design parameters have been provisionally assessed and are presented in Table. You are required to determine the following

Find the distribution, The Elementary Teachers' Federation of Ontario make ...

The Elementary Teachers' Federation of Ontario make the following claim on their website as of February 13, 2013: For years, the Elementary Teachers' Federation of Ontario (ETFO

Sample standard deviation, Sample Standard Deviation So far, we discu...

Sample Standard Deviation So far, we discussed the population standard deviation. Now, let us switch to sample standard deviation(s) that is analogous to the population stand

Find the relation between two substance, Find the Relation between two subs...

Find the Relation between two substance: The following table shows the results obtained in experiments aimed to determine how solubility of water in benzene depends on tempera

Statistical definition of probability, Statistical Definition of probabilit...

Statistical Definition of probability: Ques: (a) (i)  Distinguish Statistical Definition of probability from the Classical Definition.                  (ii) State the A

Interaction of enviornment and gene , entropy test to measure interaction b...

entropy test to measure interaction between enviornmental factors and genes

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd