Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Let's recall how do to do this with a rapid number example.
5/6 - 3/4
In this case we required a common denominator & remember that usually it's best to use the least common denominator, frequently denoted as lcd. In this case the least common denominator is 12. So we have to get the denominators of these two fractions to a 12. It is easy to do. In the first case we have to multiply the denominator by 2 to acquire 12 so we will multiply the numerator & denominator of the first fraction by 2. Recall that we've got to multiply the numerator and denominator both by the similar number as we aren't allowed to actually change the problem and it is equivalent to multiplying the fraction through 1 since (a/a)=1. . For the second term we'll need to multiply the numerator & denominator by a 3.
(5/6)-(3/4)=5(2)/6(2)-3(3)/4(3)=(10/2)-(9/12)=(10-9)/12=(1/12)
Now, the procedure for rational expressions is identical. The main complexity is finding the least common denominator. However, there is a really simple process for finding the least common denominator for rational expressions. Here is it.
1. Factor all the denominators.
2. Write each factor which appears at least once in any of the denominators. Do not write down the power which is on each factor, just write down the factor
3. Now, for each of the factor written down in the earlier step write the largest power that takes place in all the denominators containing that factor.
4. The product all the factors from the earlier step is the least common denominator.
Product and Quotient Rule : Firstly let's see why we have to be careful with products & quotients. Assume that we have the two functions f ( x ) = x 3 and g ( x ) = x 6 .
Additional Rule- Rules of Probability Additional rule is used to calculate the probability of two or more mutually exclusive events. In such circumstances the probability of t
1. 10 -2 is equal to 2. If 3n = 27, what is the value of (4n) + 1 3. What is 1/100 of 10000? 4. The formula C=5/9 x (F-32) converts Centigrade temperature from Fa
Explain Introduction to Non-Euclidean Geometry? Up to this point, the type of geometry we have been studying is known as Euclidean geometry. It is based on the studies of the a
How will the decimal point move when 245.398 is multiplied by 100? It is moved two places to the right. While multiplying by multiples of 10, the decimal point is moved to the
31/3=?
Write a program to find the area under the curve y = f(x) between x = a and x = b, integrate y = f(x) between the limits of a and b. The area under a curve between two points can b
shortricks of compound interest
if 2 ballons cost 12 coins,use equivelent ratios to see how many coins 8 ballons would cost
Q. Describe the Laws of Sines? Ans. Up to now we have dealt exclusively with right triangles. The Law of Sines and the Law of Cosines are used to solve oblique triangles
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd