Least common denominator, Mathematics

Assignment Help:

Let's recall how do to do this with a rapid number example.

                                                    5/6 - 3/4

In this case we required a common denominator & remember that usually it's best to use the least common denominator, frequently denoted as lcd. In this case the least common denominator is 12.  So we have to get the denominators of these two fractions to a 12. It is easy to do. In the first case we have to multiply the denominator by 2 to acquire 12 so we will multiply the numerator & denominator of the first fraction by 2.  Recall that we've got to multiply the numerator and denominator both by the similar number as we aren't allowed to actually change the problem and it is equivalent to multiplying the fraction through 1 since (a/a)=1. .  For the second term we'll need to multiply the numerator & denominator by a 3.

 (5/6)-(3/4)=5(2)/6(2)-3(3)/4(3)=(10/2)-(9/12)=(10-9)/12=(1/12)

Now, the procedure for rational expressions is identical. The main complexity is finding the least common denominator.  However, there is a really simple process for finding the least common denominator for rational expressions.  Here is it.

1. Factor all the denominators.

2. Write each factor which appears at least once in any of the denominators.  Do not write down the power which is on each factor, just write down the factor

3. Now, for each of the factor written down in the earlier step write the largest power that takes place in all the denominators containing that factor.

4. The product all the factors from the earlier step is the least common denominator.


Related Discussions:- Least common denominator

Discrete mathematics for computing, Everything stored on a computer can be ...

Everything stored on a computer can be represented as a string of bits. However, different types of data (for example, characters and numbers) may be represented by the same strin

Geometric interpretation of the cross product, Geometric Interpretation of ...

Geometric Interpretation of the Cross Product There is as well a geometric interpretation of the cross product.  Firstly we will let θ be the angle in between the two vectors a

Find the radii of the two circles , The sum of the diameters of two circle...

The sum of the diameters of two circles is 2.8 m and their difference of circumferences is 0.88m. Find the radii of the two circles  (Ans: 77, 63) Ans:    d 1 + d 2 = 2.8 m=

Algebraic expressions, how to simplify an expression which has different si...

how to simplify an expression which has different signs

Determine the largest possible domain and inverse function, Consider the fu...

Consider the function f(x) =1/2 (2 x +2 -x ) which has the graph (a) Explain why f has no inverse function. You should include an example to support your explanation

Fractions, #how do I add fractions?

#how do I add fractions?

Prove that 2b3-3abc+a2d=0, If  the  ratios  of  the  polynomial ax 3 +3bx...

If  the  ratios  of  the  polynomial ax 3 +3bx 2 +3cx+d  are  in  AP,  Prove  that  2b 3 -3abc+a 2 d=0 Ans: Let p(x) = ax 3 + 3bx 2 + 3cx + d and α , β , r are their three Z

Prove that a/b+c-a, a, b,c are in h.p prove that a/b+c-a, b/a+c-b, c/a+b-c ...

a, b,c are in h.p prove that a/b+c-a, b/a+c-b, c/a+b-c are in h.p To prove: (b+c-a)/a; (a+c-b)/b; (a+b-c)/c are in A.P or (b+c)/a; (a+c)/b; (a+b)/c are in A.P or 1/a; 1

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd