Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Let's recall how do to do this with a rapid number example.
5/6 - 3/4
In this case we required a common denominator & remember that usually it's best to use the least common denominator, frequently denoted as lcd. In this case the least common denominator is 12. So we have to get the denominators of these two fractions to a 12. It is easy to do. In the first case we have to multiply the denominator by 2 to acquire 12 so we will multiply the numerator & denominator of the first fraction by 2. Recall that we've got to multiply the numerator and denominator both by the similar number as we aren't allowed to actually change the problem and it is equivalent to multiplying the fraction through 1 since (a/a)=1. . For the second term we'll need to multiply the numerator & denominator by a 3.
(5/6)-(3/4)=5(2)/6(2)-3(3)/4(3)=(10/2)-(9/12)=(10-9)/12=(1/12)
Now, the procedure for rational expressions is identical. The main complexity is finding the least common denominator. However, there is a really simple process for finding the least common denominator for rational expressions. Here is it.
1. Factor all the denominators.
2. Write each factor which appears at least once in any of the denominators. Do not write down the power which is on each factor, just write down the factor
3. Now, for each of the factor written down in the earlier step write the largest power that takes place in all the denominators containing that factor.
4. The product all the factors from the earlier step is the least common denominator.
give an example of a relation R that is transitive while inverse of R is not
Implement an immutable data type Rational for rational numbers that supports addition, subtraction, multiplication and division. public class Rational Ration
log6+log-4
matlab code for transportation problem solved by vogel''s approximation method
If the areas of the circular bases of a frustum of a cone are 4cm 2 and 9cm 2 respectively and the height of the frustum is 12cm. What is the volume of the frustum. (Ans:44cm 2 )
Simplify following and write the answers with only positive exponents. (-10 z 2 y -4 ) 2 ( z 3 y ) -5 Solution (-10 z 2 y -4 ) 2 ( z 3 y ) -5
Find the sum of all natural no. between 101 & 304 which are divisible by 3 or 5. Find their sum. Ans: No let 101 and 304, which are divisible by 3. 102, 105..........
Calculate the slope of the line: Example: calculate the slope of the line whose equation is y = 2x + 3 and whose y-intercept is (0,3). Solution: y =
Tangent Lines : The first problem which we're going to study is the tangent line problem. Before getting into this problem probably it would be best to define a tangent line.
hi, i was wondering how do you provide tutoring for math specifically discrete mathematics for computer science ? I want to get some help in understanding in the meantime about alg
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +1-415-670-9521
Phone: +1-415-670-9521
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd