Large samples, Mathematics

Assignment Help:

LARGE SAMPLES

These are samples that have a sample size greater than 30(that is n>30)

(a)   Estimation of population mean

Here we suppose that if we take a large sample from a population then the mean of the population is extremely close to the mean of the sample

Steps to follow to estimate the population mean having:

i.  Take a random sample of n items where (n>30)

ii.  Calculate sample mean (x¯) and standard deviation (S)

iii.  Calculate the standard error of the mean by using the following formular

 

S = s/√n

Whereas S= Standard error of mean

S = standard deviation of the sample

n = sample size

iv. Choose a confidence level for illustration: 95 percent or 99 percent

 

v. Estimate the population mean as under

 

Population mean µ = x¯ ± (Appropriate number) × S

'Appropriate number' means confidence level for illustration, at 95 percent confidence level is 1.96 this number is generally denoted by Z and is acquired from the normal tables.

Illustration

The quality department of a wire manufacturing company periodically chooses a sample of wire specimens in order to test for breaking strength. Past experience has displayed that the breaking strengths of a specific type of wire are normally distributed along with standard deviation of 200 kilogram (kg). A random sample of 64 specimens gave a mean of 6200 kilogram (kg). Find out the population mean at 95 percent level of confidence

Solution

Population mean = x¯ ± 1.96 S

Note that sample size is already n > 30 whereas s and are described hence step i), ii) and iv) are provided.

Now:  x¯ = 6200 kilogram (kg)

S= s/√n  = 200/√64 =  25

 

Population mean         = 6200 ± 1.96(25)

                                    = 6200 ± 49

                                    = 6151 to 6249

At 95 percent level of confidence, population mean will be in among 6151 and 6249

 


Related Discussions:- Large samples

Determine the order of the local truncation error, The backwards Euler diff...

The backwards Euler difference operator is given by for differential equation y′ = f(t, y). Determine the order of the local truncation error. Explain why this difference o

Factoring, how are polynomials be factored/?

how are polynomials be factored/?

Tutor, how can i apply as tutor

how can i apply as tutor

solve the game by linear programming, UA and DU are preparing for the NCAA...

UA and DU are preparing for the NCAA basketball game championship. They are setting up their strategies for the championship game. Assessing the strength of their "benches", each c

Modeling with first order differential equations, We here move to one of th...

We here move to one of the major applications of differential equations both into this class and in general. Modeling is the process of writing a differential equation to explain a

Standard basis vectors -application of scalar multiplication, Standard Basi...

Standard Basis Vectors Revisited In the preceding section we introduced the idea of standard basis vectors with no really discussing why they were significant.  We can now do

Identify the children strategies to solve maths problems, Here are four pro...

Here are four problems. Four children solved one problem each, as given below. Identify the strategies the children have used while solving them. a) 8 + 6 = 8 + 2 + 4 = 14 b)

Bernoulli differential equations, In this case we are going to consider dif...

In this case we are going to consider differential equations in the form, y ′ +  p   ( x ) y =  q   ( x ) y n Here p(x) and q(x) are continuous functions in the

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd