Large samples, Mathematics

Assignment Help:

LARGE SAMPLES

These are samples that have a sample size greater than 30(that is n>30)

(a)   Estimation of population mean

Here we suppose that if we take a large sample from a population then the mean of the population is extremely close to the mean of the sample

Steps to follow to estimate the population mean having:

i.  Take a random sample of n items where (n>30)

ii.  Calculate sample mean (x¯) and standard deviation (S)

iii.  Calculate the standard error of the mean by using the following formular

 

S = s/√n

Whereas S= Standard error of mean

S = standard deviation of the sample

n = sample size

iv. Choose a confidence level for illustration: 95 percent or 99 percent

 

v. Estimate the population mean as under

 

Population mean µ = x¯ ± (Appropriate number) × S

'Appropriate number' means confidence level for illustration, at 95 percent confidence level is 1.96 this number is generally denoted by Z and is acquired from the normal tables.

Illustration

The quality department of a wire manufacturing company periodically chooses a sample of wire specimens in order to test for breaking strength. Past experience has displayed that the breaking strengths of a specific type of wire are normally distributed along with standard deviation of 200 kilogram (kg). A random sample of 64 specimens gave a mean of 6200 kilogram (kg). Find out the population mean at 95 percent level of confidence

Solution

Population mean = x¯ ± 1.96 S

Note that sample size is already n > 30 whereas s and are described hence step i), ii) and iv) are provided.

Now:  x¯ = 6200 kilogram (kg)

S= s/√n  = 200/√64 =  25

 

Population mean         = 6200 ± 1.96(25)

                                    = 6200 ± 49

                                    = 6151 to 6249

At 95 percent level of confidence, population mean will be in among 6151 and 6249

 


Related Discussions:- Large samples

Initial value problem, An IVP or Initial Value Problem is a differential eq...

An IVP or Initial Value Problem is a differential equation with an appropriate number of initial conditions. Illustration 3 : The subsequent is an IVP. 4x 2 y'' + 12y' +

Simple equations, three times the first of the three consecutive odd intege...

three times the first of the three consecutive odd integers is 3 more than twice the third integer. find the third integer.

Polynomials, write the zeros of underroot3power2 -8x+4underroot 3

write the zeros of underroot3power2 -8x+4underroot 3

Take home test, what is 36 percent as a fraction in simplest form

what is 36 percent as a fraction in simplest form

Determination of the regression equation, Determination of the Regression E...

Determination of the Regression Equation The determination of the regression equation such given above is generally done by using a technique termed as "the method of least sq

Find out the slope of equations, Example:  find out the slope of equations ...

Example:  find out the slope of equations and sketch the graph of the line.                         2 y - 6x = -2 Solution To get the slope we'll first put this in slope

Steps for integration strategy - integration techniques, Steps for Integrat...

Steps for Integration Strategy 1. Simplify the integrand, if possible This step is vital in the integration process. Several integrals can be taken from impossible or ve

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd