Laplace transforms, Mathematics

Assignment Help:

Here is not too much to this section. We're here going to work an illustration to exemplify how Laplace transforms can be used to solve systems of differential equations.

Illustration:  Solve the following system.

x1'= 3x1 - 3x2 + 2;                    x1(0) = 1

x2'= -6x1 - t;                             x2(0) = -1

Solution:

First see that the system is not specified in matrix form. This is since the system won't be solved in matrix form.  Also notice that the system is nonhomogeneous.

 

We start just as we did while we used Laplace transforms to resolve single differential equations. We get the transform of both differential equations.

sX1(s) - x1(0) = 3x1(s) - 3x2(s) + (2/s)

sX2(s) - x2(0) = -6x1(s) - (1/s2)

Here plug into the initial condition and simplify things a little,

(s - 3)X1(s) + 3X2(s) = (2/s) + 1 = (2 + s)/s

6X1(s) + sX2(s) = -(1/s2) - 1 = -((s2+ 1)/s2)

Here we require solving this for one of the transforms.  We'll do that by multiplying the top equation by s and the bottom with -3 and after that adding. It gives,

(s2 - 3s - 18) X1(s) = 2 + s + ((3s2+ 3)/s2)

Solving for X1 provides,

X1(s) =(s3 + 5s3 + 3)/(s2 (s + 3)( S -6))

Partial fractioning provides,

1216_LAPLACE TRANSFORMS.png

Taking the inverse transform Taking the inverse transform gives us the first solution us the first solution,

x1(t) = (1/108) (133 e6t - 28 e-3t + 3 - 18t)

Here to find the second solution we might go back up and remove X1 to get the transform for X2 and sometimes we would require doing that. Though, in this case notice that the second,

x2'= -6x1 - t                  ⇒                     x2 = ∫(- 6x1 - t) dt

Therefore, plugging the first solution into and integrating gives,

x2(t) = -(1/18) ∫ (133 e6t - 28 e-3t + 3t) dt

 = -(1/108) (133 e6t - 28 e-3t + 3 - 18t) + c

Here, reapplying the second initial condition to find the constant of integration provides,

-1 = -(1/108) (133 + 56) + c                ⇒                                 c = ¾

Then the second solution is,

x2(t) = -(1/108) (133 e6t - 56 e-3t + 18t - 81)

Therefore, putting all this together provides the solution to the system as,

x1(t) = (1/108) (133 e6t - 28 e-3t + 3 - 18t)

x2(t) = -(1/108) (133 e6t - 56 e-3t + 18t - 81)

Compared to the previous section the work here wasn't very bad. This won't all the time be the case of course, but you can notice that using Laplace transforms to determine systems isn't very bad in at least several cases.


Related Discussions:- Laplace transforms

Explain how to distribute simplifying expressions, Explain How to Distribut...

Explain How to Distribute simplifying expressions? The distributive law states that for all numbers a, b, and c, a(b + c)= ab + ac What does this mean in plain language?

Calculate the investment - apr 4 percent, Suppose you start saving today fo...

Suppose you start saving today for a $55,000 down payment that you plan to make on a house in 7 years,  assume that you make no deposits into the account after the initial deposit,

Engg maths, How to get assignment to solve and earn money

How to get assignment to solve and earn money

Properties for exponents, The next thing that we must acknowledge is that a...

The next thing that we must acknowledge is that all of the properties for exponents . This includes the more general rational exponent that we haven't looked at yet. Now the pr

Draw the digraph for the partial order, 1. Consider the relation on A = {1,...

1. Consider the relation on A = {1, 2, 3, 4} with relation matrix: Assume that the rows and columns of the matrix refer to the elements of A in the order 1, 2, 3, 4. (a)

Solve 9 sin ( 2 x )= -5 cos(2x ) on[-10, Solve 9 sin ( 2 x )= -5 cos(2x ) o...

Solve 9 sin ( 2 x )= -5 cos(2x ) on[-10,0]. Solution At first glance this problem appears to be at odds with the sentence preceding the example. However, it really isn't.

Emi, calculation of emi %

calculation of emi %

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd