Laplace transforms, Mathematics

Assignment Help:

Here is not too much to this section. We're here going to work an illustration to exemplify how Laplace transforms can be used to solve systems of differential equations.

Illustration:  Solve the following system.

x1'= 3x1 - 3x2 + 2;                    x1(0) = 1

x2'= -6x1 - t;                             x2(0) = -1

Solution:

First see that the system is not specified in matrix form. This is since the system won't be solved in matrix form.  Also notice that the system is nonhomogeneous.

 

We start just as we did while we used Laplace transforms to resolve single differential equations. We get the transform of both differential equations.

sX1(s) - x1(0) = 3x1(s) - 3x2(s) + (2/s)

sX2(s) - x2(0) = -6x1(s) - (1/s2)

Here plug into the initial condition and simplify things a little,

(s - 3)X1(s) + 3X2(s) = (2/s) + 1 = (2 + s)/s

6X1(s) + sX2(s) = -(1/s2) - 1 = -((s2+ 1)/s2)

Here we require solving this for one of the transforms.  We'll do that by multiplying the top equation by s and the bottom with -3 and after that adding. It gives,

(s2 - 3s - 18) X1(s) = 2 + s + ((3s2+ 3)/s2)

Solving for X1 provides,

X1(s) =(s3 + 5s3 + 3)/(s2 (s + 3)( S -6))

Partial fractioning provides,

1216_LAPLACE TRANSFORMS.png

Taking the inverse transform Taking the inverse transform gives us the first solution us the first solution,

x1(t) = (1/108) (133 e6t - 28 e-3t + 3 - 18t)

Here to find the second solution we might go back up and remove X1 to get the transform for X2 and sometimes we would require doing that. Though, in this case notice that the second,

x2'= -6x1 - t                  ⇒                     x2 = ∫(- 6x1 - t) dt

Therefore, plugging the first solution into and integrating gives,

x2(t) = -(1/18) ∫ (133 e6t - 28 e-3t + 3t) dt

 = -(1/108) (133 e6t - 28 e-3t + 3 - 18t) + c

Here, reapplying the second initial condition to find the constant of integration provides,

-1 = -(1/108) (133 + 56) + c                ⇒                                 c = ¾

Then the second solution is,

x2(t) = -(1/108) (133 e6t - 56 e-3t + 18t - 81)

Therefore, putting all this together provides the solution to the system as,

x1(t) = (1/108) (133 e6t - 28 e-3t + 3 - 18t)

x2(t) = -(1/108) (133 e6t - 56 e-3t + 18t - 81)

Compared to the previous section the work here wasn't very bad. This won't all the time be the case of course, but you can notice that using Laplace transforms to determine systems isn't very bad in at least several cases.


Related Discussions:- Laplace transforms

Mechanical vibrations, While we first looked at mechanical vibrations we lo...

While we first looked at mechanical vibrations we looked at a particular mass hanging on a spring with the possibility of both a damper or/and external force acting upon the mass.

difference between two sample means (large sample), Testing The Difference...

Testing The Difference Between Two Sample Means (Large Samples) A large sample is defined as one which have 30 or more items as n≥30 whereas n is the sample size In a busine

Plus, 236+2344+346=

236+2344+346=

Help me, How should Shoppers’ Stop develop its demand forecasts?

How should Shoppers’ Stop develop its demand forecasts?

Union and intersection - set theory, Union and Intersection - Set theory ...

Union and Intersection - Set theory B ∩ C indicates the intersection of B and C. it is the set having all those elements that belong to both B and C If B = {5, 8, 11, 20, 2

Quantitative Techniques, You are given that the total frequency is 900 and ...

You are given that the total frequency is 900 and the median 100.48. From the following frequency distribution, find the class frequencies that are missing. Intelligence No. of Int

What is the marginal product of labor function, Your engineering department...

Your engineering department estimated the following production function. Q = 15L 2 - 0.5L 3 a. What is the marginal product of labor function, MP L ? b. What is the aver

Explain comparing fractions with example, Explain Comparing Fractions with ...

Explain Comparing Fractions with example? If fractions are not equivalent, how do you figure out which one is larger? Comparing fractions involves finding the least common

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd