Laplace transforms, Mathematics

Assignment Help:

Here is not too much to this section. We're here going to work an illustration to exemplify how Laplace transforms can be used to solve systems of differential equations.

Illustration:  Solve the following system.

x1'= 3x1 - 3x2 + 2;                    x1(0) = 1

x2'= -6x1 - t;                             x2(0) = -1

Solution:

First see that the system is not specified in matrix form. This is since the system won't be solved in matrix form.  Also notice that the system is nonhomogeneous.

 

We start just as we did while we used Laplace transforms to resolve single differential equations. We get the transform of both differential equations.

sX1(s) - x1(0) = 3x1(s) - 3x2(s) + (2/s)

sX2(s) - x2(0) = -6x1(s) - (1/s2)

Here plug into the initial condition and simplify things a little,

(s - 3)X1(s) + 3X2(s) = (2/s) + 1 = (2 + s)/s

6X1(s) + sX2(s) = -(1/s2) - 1 = -((s2+ 1)/s2)

Here we require solving this for one of the transforms.  We'll do that by multiplying the top equation by s and the bottom with -3 and after that adding. It gives,

(s2 - 3s - 18) X1(s) = 2 + s + ((3s2+ 3)/s2)

Solving for X1 provides,

X1(s) =(s3 + 5s3 + 3)/(s2 (s + 3)( S -6))

Partial fractioning provides,

1216_LAPLACE TRANSFORMS.png

Taking the inverse transform Taking the inverse transform gives us the first solution us the first solution,

x1(t) = (1/108) (133 e6t - 28 e-3t + 3 - 18t)

Here to find the second solution we might go back up and remove X1 to get the transform for X2 and sometimes we would require doing that. Though, in this case notice that the second,

x2'= -6x1 - t                  ⇒                     x2 = ∫(- 6x1 - t) dt

Therefore, plugging the first solution into and integrating gives,

x2(t) = -(1/18) ∫ (133 e6t - 28 e-3t + 3t) dt

 = -(1/108) (133 e6t - 28 e-3t + 3 - 18t) + c

Here, reapplying the second initial condition to find the constant of integration provides,

-1 = -(1/108) (133 + 56) + c                ⇒                                 c = ¾

Then the second solution is,

x2(t) = -(1/108) (133 e6t - 56 e-3t + 18t - 81)

Therefore, putting all this together provides the solution to the system as,

x1(t) = (1/108) (133 e6t - 28 e-3t + 3 - 18t)

x2(t) = -(1/108) (133 e6t - 56 e-3t + 18t - 81)

Compared to the previous section the work here wasn't very bad. This won't all the time be the case of course, but you can notice that using Laplace transforms to determine systems isn't very bad in at least several cases.


Related Discussions:- Laplace transforms

Circle, a wheel revolves 360 deegre revolution in one minute .Find how many...

a wheel revolves 360 deegre revolution in one minute .Find how many radians will the wheel subtend in one second

Formulas for the volume of this solid, Formulas for the volume of this soli...

Formulas for the volume of this solid V = ∫ b a A ( x) dx          V = ∫ d c A ( y ) dy where, A ( x ) & A ( y ) is the cross-sectional area of the solid. There are seve

Fft algorithm, (a) Using interpolation, give a polynomial f ∈ F 11 [x] of d...

(a) Using interpolation, give a polynomial f ∈ F 11 [x] of degree at most 3 satisfying f(0) = 2; f(2) = 3; f(3) = 1; f(7) = 6 (b) What are all the polynomials in F 11 [x] which

Help!!!, The equation -2x^2-kx-2=0 has two different real soultions. find t...

The equation -2x^2-kx-2=0 has two different real soultions. find the set of possible values for k.

Trignometery., using the formula sin A =under root 1+ cos2A /2 . find value...

using the formula sin A =under root 1+ cos2A /2 . find value of 30 degree, it is being given that cos 60 degree =1/2.

Evaluate inverse tangents , Evaluate following limits. Solution ...

Evaluate following limits. Solution Here the first two parts are actually just the basic limits including inverse tangents and can easily be found by verifying the fol

Find the value of a+b, If A, B are acute angles and sinA= cosB, then find t...

If A, B are acute angles and sinA= cosB, then find the value of A+B. Ans:    A + B = 90 o

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd