Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
The language accepted by a NFA A = (Q,Σ, δ, q0, F) is
NFAs correspond to a kind of parallelism in the automata. We can think of the same basic model of automaton: an input tape, a single read head and an internal state, but when the transition function allows more than one next state for a given state and input we keep an independent internal state for each of the alternatives. In a sense we have a constantly growing and shrinking set of automata all processing the same input synchronously. For example, a computation of the NFA given above on ‘abaab' could be interpreted as:
This string is accepted, since there is at least one computation from 0 to 0 or 2 on ‘abaab'. Similarly, each of ‘ε', ‘ab', ‘aba' and ‘abaa' are accepted, but ‘a' alone is not. Note that if the input continues with ‘b' as shown there will be no states left; the automaton will crash. Clearly, it can accept no string starting with ‘abaabb' since the computations from 0 or ‘abaabb' end either in h0, bi or in h2, bi and, consequentially, so will all computations from 0 on any string extending it. The fact that in this model there is not necessarily a (non-crashing) computation from q0 for each string complicates the proof of the language accepted by the automaton-we can no longer assume that if there is no (non-crashing) computation from q0 to a ?nal state on w then there must be a (non-crashing) computation from q0 to a non-?nal state on w. As we shall see, however, we will never need to do such proofs for NFAs directly.
Generate 100 random numbers with the exponential distribution lambda=5.0.What is the probability that the largest of them is less than 1.0?
For example, the question of whether a given regular language is positive (does not include the empty string) is algorithmically decidable. "Positiveness Problem". Note that
proof ogdens lemma .with example i am not able to undestand the meaning of distinguished position .
what is theory of computtion
1. An integer is said to be a “continuous factored” if it can be expresses as a product of two or more continuous integers greater than 1. Example of continuous factored integers
Our primary concern is to obtain a clear characterization of which languages are recognizable by strictly local automata and which aren't. The view of SL2 automata as generators le
State & prove pumping lemma for regular set. Show that for the language L={ap |p is a prime} is not regular
prove following function is turing computable? f(m)={m-2,if m>2, {1,if
Prepare the consolidated financial statements for the year ended 30 June 2011. On 1 July 2006, Mark Ltd acquired all the share capitall of john Ltd for $700,000. At the date , J
explain turing machine .
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd