Language accepted by a nfa, Theory of Computation

Assignment Help:

The language accepted by a NFA A = (Q,Σ, δ, q0, F) is

1377_Language Accepted by a NFA.png

NFAs correspond to a kind of parallelism in the automata. We can think of the same basic model of automaton: an input tape, a single read head and an internal state, but when the transition function allows more than one next state for a given state and input we keep an independent internal state for each of the alternatives. In a sense we have a constantly growing and shrinking set of automata all processing the same input synchronously. For example, a computation of the NFA given above on ‘abaab' could be interpreted as:

This string is accepted, since there is at least one computation from 0 to 0 or 2 on ‘abaab'. Similarly, each of ‘ε', ‘ab', ‘aba' and ‘abaa' are accepted, but ‘a' alone is not. Note that if the input continues with ‘b' as shown there will be no states left; the automaton will crash. Clearly, it can accept no string starting with ‘abaabb' since the computations from 0 or ‘abaabb' end either in h0, bi or in h2, bi and, consequentially, so will all computations from 0 on any string extending it. The fact that in this model there is not necessarily a (non-crashing) computation from q0 for each string complicates the proof of the language accepted by the automaton-we can no longer assume that if there is no (non-crashing) computation from q0 to a ?nal state on w then there must be a (non-crashing) computation from q0 to a non-?nal state on w. As we shall see, however, we will never need to do such proofs for NFAs directly.


Related Discussions:- Language accepted by a nfa

Example of finite state automaton, The initial ID of the automaton given in...

The initial ID of the automaton given in Figure 3, running on input ‘aabbba' is (A, aabbba) The ID after the ?rst three transitions of the computation is (F, bba) The p

Decision problems of regular languages, We'll close our consideration of re...

We'll close our consideration of regular languages by looking at whether (certain) problems about regular languages are algorithmically decidable.

Boolean operations - class of recognizable languages, Theorem The class of ...

Theorem The class of recognizable languages is closed under Boolean operations. The construction of the proof of Lemma 3 gives us a DFA that keeps track of whether or not a give

Non - sl languages, Application of the general suffix substitution closure ...

Application of the general suffix substitution closure theorem is slightly more complicated than application of the specific k-local versions. In the specific versions, all we had

Kleene Closure, 1. Does above all''s properties can be used to prove a lang...

1. Does above all''s properties can be used to prove a language regular? 2..which of the properties can be used to prove a language regular and which of these not? 3..Identify one

Theory of computation, Computations are deliberate for processing informati...

Computations are deliberate for processing information. Computability theory was discovered in the 1930s, and extended in the 1950s and 1960s. Its basic ideas have become part of

Pendulum Swings, how many pendulum swings will it take to walk across the c...

how many pendulum swings will it take to walk across the classroom?

Brain game, If the first three words are the boys down,what are the last th...

If the first three words are the boys down,what are the last three words??

Positiveness problem - decision problems, For example, the question of whet...

For example, the question of whether a given regular language is positive (does not include the empty string) is algorithmically decidable. "Positiveness Problem". Note that

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd