Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
The language accepted by a NFA A = (Q,Σ, δ, q0, F) is
NFAs correspond to a kind of parallelism in the automata. We can think of the same basic model of automaton: an input tape, a single read head and an internal state, but when the transition function allows more than one next state for a given state and input we keep an independent internal state for each of the alternatives. In a sense we have a constantly growing and shrinking set of automata all processing the same input synchronously. For example, a computation of the NFA given above on ‘abaab' could be interpreted as:
This string is accepted, since there is at least one computation from 0 to 0 or 2 on ‘abaab'. Similarly, each of ‘ε', ‘ab', ‘aba' and ‘abaa' are accepted, but ‘a' alone is not. Note that if the input continues with ‘b' as shown there will be no states left; the automaton will crash. Clearly, it can accept no string starting with ‘abaabb' since the computations from 0 or ‘abaabb' end either in h0, bi or in h2, bi and, consequentially, so will all computations from 0 on any string extending it. The fact that in this model there is not necessarily a (non-crashing) computation from q0 for each string complicates the proof of the language accepted by the automaton-we can no longer assume that if there is no (non-crashing) computation from q0 to a ?nal state on w then there must be a (non-crashing) computation from q0 to a non-?nal state on w. As we shall see, however, we will never need to do such proofs for NFAs directly.
wht is pumping lema
The Myhill-Nerode Theorem provided us with an algorithm for minimizing DFAs. Moreover, the DFA the algorithm produces is unique up to isomorphism: every minimal DFA that recognizes
Myhill graphs also generalize to the SLk case. The k-factors, however, cannot simply denote edges. Rather the string σ 1 σ 2 ....... σ k-1 σ k asserts, in essence, that if we hav
turing machine for prime numbers
A problem is said to be unsolvable if no algorithm can solve it. The problem is said to be undecidable if it is a decision problem and no algorithm can decide it. It should be note
The Last Stop Boutique is having a five-day sale. Each day, starting on Monday, the price will drop 10% of the previous day’s price. For example, if the original price of a product
program in C++ of Arden''s Theorem
Intuitively, closure of SL 2 under intersection is reasonably easy to see, particularly if one considers the Myhill graphs of the automata. Any path through both graphs will be a
The Recognition Problem for a class of languages is the question of whether a given string is a member of a given language. An instance consists of a string and a (?nite) speci?cat
Let ? ={0,1} design a Turing machine that accepts L={0^m 1^m 2^m } show using Id that a string from the language is accepted & if not rejected .
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd