Lagrange multipliertest, Advanced Statistics

Assignment Help:

The Null Hypothesis - H0:  There is autocorrelation

The Alternative Hypothesis - H1: There is no autocorrelation

Rejection Criteria: Reject H0 (n-s)R2 >641_Partial Autocorrelation Function1.png = (1515 - 4) x (0.01) = 15.11 > 9.49 (641_Partial Autocorrelation Function1.png)

1515 cases used, 4 cases contain missing values

Since 15.11 > 9.49 the chi-squared value with 4 lags (ET-1, ET-2, ET-3, and ET-4) there is evidence to suggest that we reject H0 meaning that there is no autocorrelation.    

The regression equation is

RESI1 = - 0.0011 + 0.000005 totexp - 0.000001 income + 0.000017 age + 0.00007 nk

        + 0.0085 ET-1 + 0.0070 ET-2 - 0.0284 ET-3 - 0.0074 ET-4

Predictor         Coef     SE Coef                 T      P

Constant       -0.00105     0.01375        -0.08  0.939

totexp          0.00000471  0.00006080   0.08  0.938

income        -0.00000082  0.00004314  -0.02  0.985

age              0.0000167   0.0003090     0.05  0.957

nk                0.000071     0.004785       0.01  0.988

ET-1             0.00847       0.02580         0.33  0.743

ET-2             0.00700       0.02584         0.27  0.786

ET-3           -0.02842       0.02587        -1.10  0.272

ET-4          -0.00743       0.02592         -0.29  0.774

As the T value decreases, the P value increases which is noticeable above due to the inclusions of lags. Most of the T values are now closer to 0 which shows that there is less reliability of the coefficient.  ET-3 will be included in a further regression analysis as it is significant with a value of -1.10, conversely ET-1, ET-2, ET-4 will be removed as they are insignificant with low T values.     

S = 0.0905514   R-Sq = 0.1%   R-Sq(adj) = 0.0%

The inclusion of lags has caused the r-squared to be really low at 0.1% which certainly suggests that the model is inadequate for explaining the Y variable. It also indicates that data points are distributed away from the line of best fit and that the independent variables are poor predictors for the dependent variable. The remaining percentage (99.9%) is the variation which is unknown.

 

Analysis of Variance

 

Source               DF         SS        MS     F      P

Regression        8    0.012127  0.001516  0.18  0.993

Residual Error  1506  12.348529  0.008200

Total                1514  12.360656

Source  DF    Seq SS

totexp   1  0.000029

income  1  0.000005

age       1  0.000011

nk         1  0.000000

ET-1      1  0.000903

ET-2      1  0.000544

ET-3      1  0.009961

ET-4      1  0.000673

Since the F value is small at 0.18 and the P value is high 0.993 it reveals that there is no relationship between the Y dependent variable and X independent variables. This indicates that as it is 0.18 it does not support the model and therefore the slopes are equal to 0.


Related Discussions:- Lagrange multipliertest

Length-biased data, Length-biased data is a data which arise when the prob...

Length-biased data is a data which arise when the probability that an item is sampled is proportional to its own length. A main example of this situation occurs in the renewal the

Whites general heteroscedasticity test, The Null Hypothesis - H0:  γ 1 = γ...

The Null Hypothesis - H0:  γ 1 = γ 2 = ...  =  0  i.e.  there is no heteroscedasticity in the model The Alternative Hypothesis - H1:  at least one of the γ i 's are not equal

Canonical correlation analysis, Canonical correlation analysis : A process ...

Canonical correlation analysis : A process of analysis for investigating the relationship between the two groups of variables, by ?nding the linear functions of one of the sets of

Centile reference charts, Centile reference charts : Charts which are used ...

Centile reference charts : Charts which are used inmedicine to observe the clinical measurements on individual patients in the context of the population values. If the population i

Decision theory, A unified approach to all problems of prediction, estimati...

A unified approach to all problems of prediction, estimation, and hypothesis testing. It is based on concept of the decision function, which tells the performer of experiment how t

Factorial moment generating function, The function of a variable t which, w...

The function of a variable t which, when extended formally as a power series in t, yields factorial moments as the coefficients of the respective powers. If the P(t) is probability

Outlier, Outlier is an observation which seems to deviate markedly from th...

Outlier is an observation which seems to deviate markedly from the other members of the sample in which it happens. In the set of systolic blood pressures, {125, 128, 130, 131, 19

Bioassay, Bioassay : It is an abbreviation of biological assay, which in it...

Bioassay : It is an abbreviation of biological assay, which in its classical form includes an experiment conducted on biological material to determine relative potency of test and

Define lagging indicators, Lagging indicators: The part of a collection of...

Lagging indicators: The part of a collection of the economic time series designed to give information about the broad swings in measures of the aggregate economic activity known a

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd