Kruskals algorithm, Data Structure & Algorithms

Assignment Help:

Krushkal's algorithm uses the concept of forest of trees. At first the forest contains n single node trees (and no edges). At each of the step, we add on one (the cheapest one) edge so that it links two trees together. If it makes a cycle, simply it would mean that it links two nodes that were connected already. So, we reject it.

The steps in Kruskal's Algorithm are as:

1.   The forest is constructed through the graph G - along each node as a separate tree in the forest.

2.   The edges are placed within a priority queue.

3.   Do till we have added n-1 edges to the graph,

  I.   Extract the lowest cost edge from the queue.

 II.   If it makes a cycle, then a link already exists among the concerned nodes. So reject it.

 III.  Otherwise add it to the forest. Adding it to the forest will join two trees together.

The forest of trees is a division of the original set of nodes. At first all the trees have exactly one node in them. As the algorithm progresses, we make a union of two of the trees (sub-sets), until the partition has only one sub-set containing all the nodes eventually.

Let us see the sequence of operations to determine the Minimum Cost Spanning Tree(MST) in a graph via Kruskal's algorithm. Suppose the graph of graph shown in figure  and below figure  illustrates the construction of MST of graph of Figure

1339_Kruskals Algorithm.png

Figure: A Graph

Figure: Construction of Minimum Cost Spanning Tree for the Graph by application of Kruskal's algorithm

The following are several steps in the construction of MST for the graph of Figure via Kruskal's algorithm.

Step 1 :  The lowest cost edge is chosen from the graph that is not in MST (initially MST is empty). The cheapest edge is 3 that is added to the MST (illustrated in bold edges)

Step 2: The next cheap edge which is not in MST is added (edge with cost 4).

Step 3 : The next lowest cost edge that is not in MST is added (edge with cost 6).

 Step 4 : The next lowest cost edge that is not in MST is added (edge with cost 7).

Step 5 : The next lowest cost edge that is not in MST is 8 but form a cycle. Hence, it is discarded. The next lowest cost edge 9 is added. Now the MST has all the vertices of the graph. This results in the MST of the original graph.


Related Discussions:- Kruskals algorithm

What are the properties of colour, Properties of colour Colour descript...

Properties of colour Colour descriptions and specifications generally include three properties: hue; saturation and brightness. Hue associates a colour with some position in th

Example of back face detection method, Example of Back Face Detection Metho...

Example of Back Face Detection Method To illustrate the method, we shall start with the tetrahedron (pyramid) PQRS of     Figure with vertices P (1, 1, 2), Q (3, 2, 3), R (1,

STACK, WHAT IS THE PURPOSE OF STACK IN C

WHAT IS THE PURPOSE OF STACK IN C

Create accessors for this data structure, Create a Money data structure tha...

Create a Money data structure that is made up of amount and currency. (a) Write a constructor for this data structure (b) Create accessors for this data structure (c) Writ

Postfix expression algorithm, Write an algorithm to calculate a postfix exp...

Write an algorithm to calculate a postfix expression.  Execute your algorithm using the given postfix expression as your input : a b + c d +*f ↑ . T o evaluate a postfix expr

Splaying algorithm, Insertion & deletion of target key requires splaying of...

Insertion & deletion of target key requires splaying of the tree. In case of insertion, the tree is splayed to find the target. If, target key is found out, then we have a duplicat

Types of tree ?, Binary: Each node has one, zero, or two children. This ...

Binary: Each node has one, zero, or two children. This assertion creates many tree operations efficient and simple. Binary Search : A binary tree where each and every left

Define dynamic programming, Define Dynamic Programming  Dynamic  progra...

Define Dynamic Programming  Dynamic  programming  is  a  method  for  solving  problems  with  overlapping  problems.  Typically, these sub problems arise from a recurrence rel

Matrix stored in memory, Method to measure address of any element of a matr...

Method to measure address of any element of a matrix stored in memory. Let us consider 2 dimensional array a of size m*n further consider that the lower bound for the row index

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd