Kruskals algorithm, Data Structure & Algorithms

Assignment Help:

Krushkal's algorithm uses the concept of forest of trees. At first the forest contains n single node trees (and no edges). At each of the step, we add on one (the cheapest one) edge so that it links two trees together. If it makes a cycle, simply it would mean that it links two nodes that were connected already. So, we reject it.

The steps in Kruskal's Algorithm are as:

1.   The forest is constructed through the graph G - along each node as a separate tree in the forest.

2.   The edges are placed within a priority queue.

3.   Do till we have added n-1 edges to the graph,

  I.   Extract the lowest cost edge from the queue.

 II.   If it makes a cycle, then a link already exists among the concerned nodes. So reject it.

 III.  Otherwise add it to the forest. Adding it to the forest will join two trees together.

The forest of trees is a division of the original set of nodes. At first all the trees have exactly one node in them. As the algorithm progresses, we make a union of two of the trees (sub-sets), until the partition has only one sub-set containing all the nodes eventually.

Let us see the sequence of operations to determine the Minimum Cost Spanning Tree(MST) in a graph via Kruskal's algorithm. Suppose the graph of graph shown in figure  and below figure  illustrates the construction of MST of graph of Figure

1339_Kruskals Algorithm.png

Figure: A Graph

Figure: Construction of Minimum Cost Spanning Tree for the Graph by application of Kruskal's algorithm

The following are several steps in the construction of MST for the graph of Figure via Kruskal's algorithm.

Step 1 :  The lowest cost edge is chosen from the graph that is not in MST (initially MST is empty). The cheapest edge is 3 that is added to the MST (illustrated in bold edges)

Step 2: The next cheap edge which is not in MST is added (edge with cost 4).

Step 3 : The next lowest cost edge that is not in MST is added (edge with cost 6).

 Step 4 : The next lowest cost edge that is not in MST is added (edge with cost 7).

Step 5 : The next lowest cost edge that is not in MST is 8 but form a cycle. Hence, it is discarded. The next lowest cost edge 9 is added. Now the MST has all the vertices of the graph. This results in the MST of the original graph.


Related Discussions:- Kruskals algorithm

Define the term counting - pseudocode, Define the term counting - Pseudocod...

Define the term counting - Pseudocode Counting in 1s is quite simple; use of statement count = count + 1 would enable counting to be done (for example in controlling a repeat

#, if two relations R and S are joined, then the non matching tuples of bot...

if two relations R and S are joined, then the non matching tuples of both R and S are ignored in

Draws a rectangular grid algorithms, Prepare a GUI called Hotplate GUI that...

Prepare a GUI called Hotplate GUI that holds a central panel that draws a rectangular grid that represents Element objects which should be held in a 2-dimensional array. The applic

A Booth''s, Draw a flowchart of a Booth''s multiplication algorithm and exp...

Draw a flowchart of a Booth''s multiplication algorithm and explain it.

Various passes of bubble sort, Q. Show the various passes of bubble sort on...

Q. Show the various passes of bubble sort on the unsorted given list 11, 15, 2, 13, 6           Ans: The given data is as follows:- Pass 1:-     11   15   2     13

Encryption the plain-text using the round keys, Encryption the plain-text u...

Encryption the plain-text using the round keys: 1. (Key schedule) Implement an algorithm that will take a 128 bit key and generate the round keys for the AES encryption/decryp

Array-based representation of a binary tree, Assume a complete binary tree ...

Assume a complete binary tree T with n nodes where each node has an item (value). Label the nodes of the complete binary tree T from top to bottom & from left to right 0, 1, ..., n

Write an algorithm insert, Q. Write an algorithm INSERT which takes a point...

Q. Write an algorithm INSERT which takes a pointer to a sorted list and a pointer to a node and inserts the node into its correct position or place in the list.  Ans: /* s

Maximum numbers of nodes a binary tree of depth d, Maximum numbers of nodes...

Maximum numbers of nodes a binary tree of depth d The maximum numbers of nodes a binary tree of depth d can have is 2 d+1 -1.

Applications of shortest path algorithms, The minimum cost spanning tree ha...

The minimum cost spanning tree has broad applications in distinct fields. It represents several complicated real world problems such as: 1. Minimum distance for travelling all o

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd