Kruskals algorithm, Data Structure & Algorithms

Assignment Help:

Krushkal's algorithm uses the concept of forest of trees. At first the forest contains n single node trees (and no edges). At each of the step, we add on one (the cheapest one) edge so that it links two trees together. If it makes a cycle, simply it would mean that it links two nodes that were connected already. So, we reject it.

The steps in Kruskal's Algorithm are as:

1.   The forest is constructed through the graph G - along each node as a separate tree in the forest.

2.   The edges are placed within a priority queue.

3.   Do till we have added n-1 edges to the graph,

  I.   Extract the lowest cost edge from the queue.

 II.   If it makes a cycle, then a link already exists among the concerned nodes. So reject it.

 III.  Otherwise add it to the forest. Adding it to the forest will join two trees together.

The forest of trees is a division of the original set of nodes. At first all the trees have exactly one node in them. As the algorithm progresses, we make a union of two of the trees (sub-sets), until the partition has only one sub-set containing all the nodes eventually.

Let us see the sequence of operations to determine the Minimum Cost Spanning Tree(MST) in a graph via Kruskal's algorithm. Suppose the graph of graph shown in figure  and below figure  illustrates the construction of MST of graph of Figure

1339_Kruskals Algorithm.png

Figure: A Graph

Figure: Construction of Minimum Cost Spanning Tree for the Graph by application of Kruskal's algorithm

The following are several steps in the construction of MST for the graph of Figure via Kruskal's algorithm.

Step 1 :  The lowest cost edge is chosen from the graph that is not in MST (initially MST is empty). The cheapest edge is 3 that is added to the MST (illustrated in bold edges)

Step 2: The next cheap edge which is not in MST is added (edge with cost 4).

Step 3 : The next lowest cost edge that is not in MST is added (edge with cost 6).

 Step 4 : The next lowest cost edge that is not in MST is added (edge with cost 7).

Step 5 : The next lowest cost edge that is not in MST is 8 but form a cycle. Hence, it is discarded. The next lowest cost edge 9 is added. Now the MST has all the vertices of the graph. This results in the MST of the original graph.


Related Discussions:- Kruskals algorithm

Method to add an element in circular queue, Q. Let us consider a queue is h...

Q. Let us consider a queue is housed in an array in circular fashion or trend. It is required to add new items to the queue. Write down a method ENQ to achieve this also check whet

Binary search technique, Q. Describe the basic concept of binary search tec...

Q. Describe the basic concept of binary search technique? Is it more efficient than the sequential search?         Ans : The bin ary search technique:- This tec

What do you understand by structured programming, What do you understand by...

What do you understand by structured programming Structured Programming  This term is used for programming design that emphasizes:- (1) Hierarchical design of programmi

find shortest path from a to z using dijkstra''s algorithm., Q.  In the gi...

Q.  In the given figure find the shortest path from A to Z using Dijkstra's Algorithm.    Ans: 1.  P=φ;  T={A,B,C,D,E,F,G,H,I,J,K,L,M,Z} Let L(A)

Define a procedure called make-avl-tree, This question deals with AVL trees...

This question deals with AVL trees. You must use mutable pairs/lists to implement this data structure: (a) Define a procedure called make-avl-tree which makes an AVL tree with o

Explain circular queues, Circular Queues:- A more efficient queue repre...

Circular Queues:- A more efficient queue representation is get by regarding the array Q(1:n) as circular. It becomes more convenient to declare the array as Q(O: n-1), when  re

Depth-First Traversal, With the help of a program and a numerical example e...

With the help of a program and a numerical example explain the Depth First Traversal of a tree.

Explain linked list and its types, Data Structure and Algorithm 1. Exp...

Data Structure and Algorithm 1. Explain linked list and its types. How do you represent linked list in memory? 2. List and elucidate the types of binary tree. 3. Descr

Algorithmic implementation of multiple stacks, So far, we now have been con...

So far, we now have been concerned only with the representation of single stack. What happens while a data representation is required for several stacks? Let us consider an array X

Amortized algorithm analysis, In the amortized analysis, the time needed to...

In the amortized analysis, the time needed to perform a set of operations is the average of all operations performed. Amortized analysis considers as a long sequence of operations

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd