Kruskals algorithm, Data Structure & Algorithms

Assignment Help:

Krushkal's algorithm uses the concept of forest of trees. At first the forest contains n single node trees (and no edges). At each of the step, we add on one (the cheapest one) edge so that it links two trees together. If it makes a cycle, simply it would mean that it links two nodes that were connected already. So, we reject it.

The steps in Kruskal's Algorithm are as:

1.   The forest is constructed through the graph G - along each node as a separate tree in the forest.

2.   The edges are placed within a priority queue.

3.   Do till we have added n-1 edges to the graph,

  I.   Extract the lowest cost edge from the queue.

 II.   If it makes a cycle, then a link already exists among the concerned nodes. So reject it.

 III.  Otherwise add it to the forest. Adding it to the forest will join two trees together.

The forest of trees is a division of the original set of nodes. At first all the trees have exactly one node in them. As the algorithm progresses, we make a union of two of the trees (sub-sets), until the partition has only one sub-set containing all the nodes eventually.

Let us see the sequence of operations to determine the Minimum Cost Spanning Tree(MST) in a graph via Kruskal's algorithm. Suppose the graph of graph shown in figure  and below figure  illustrates the construction of MST of graph of Figure

1339_Kruskals Algorithm.png

Figure: A Graph

Figure: Construction of Minimum Cost Spanning Tree for the Graph by application of Kruskal's algorithm

The following are several steps in the construction of MST for the graph of Figure via Kruskal's algorithm.

Step 1 :  The lowest cost edge is chosen from the graph that is not in MST (initially MST is empty). The cheapest edge is 3 that is added to the MST (illustrated in bold edges)

Step 2: The next cheap edge which is not in MST is added (edge with cost 4).

Step 3 : The next lowest cost edge that is not in MST is added (edge with cost 6).

 Step 4 : The next lowest cost edge that is not in MST is added (edge with cost 7).

Step 5 : The next lowest cost edge that is not in MST is 8 but form a cycle. Hence, it is discarded. The next lowest cost edge 9 is added. Now the MST has all the vertices of the graph. This results in the MST of the original graph.


Related Discussions:- Kruskals algorithm

Explain about franklin algorithm, Explain about Franklin Algorithm We m...

Explain about Franklin Algorithm We mentioned how the number of possible comparisons of polygons grows as the square of the number of polygons in the scene. Many of the hidden-

Algorithms for push and pop operation, Q. Suggest a method of implementing ...

Q. Suggest a method of implementing two stacks in one array such that as long as space is there in an array, you should be capable to add an element in either stack. Using proposed

Boundary tag method in context of dynamic memory management, Q. How can we ...

Q. How can we free the memory by using Boundary tag method in the context of Dynamic memory management?

Deletion, sir how can i explain deletion process in a data structure

sir how can i explain deletion process in a data structure

Process of decision making under uncertainty, (a) Describe the steps involv...

(a) Describe the steps involved in the process of decision making under uncertainty. (b) Explain the following principles of decision making: (i) Laplace, (ii) Hurwicz. (c

Complexity of an algorithm, An algorithm is a sequence of steps to solve a ...

An algorithm is a sequence of steps to solve a problem; there may be more than one algorithm to solve a problem. The choice of a particular algorithm depends upon following cons

Infix expression to postfix form using the stack function, Q. Convert the f...

Q. Convert the following given Infix expression to Postfix form using the stack function: x + y * z + ( p * q + r ) * s , Follow general precedence rule and suppose tha

Example of binary search, Let us assume a file of 5 records that means n = ...

Let us assume a file of 5 records that means n = 5 And k is a sorted array of keys of those 5 records. Let key = 55, low = 0, high = 4 Iteration 1: mid = (0+4)/2 = 2

Minimum cost spanning trees, A spanning tree of any graph is only a subgrap...

A spanning tree of any graph is only a subgraph that keeps all the vertices and is a tree (having no cycle). A graph might have many spanning trees. Figure: A Graph

Implementing abstract data types, Implementing abstract data types A co...

Implementing abstract data types A course in data structures and algorithms is hence a course in implementing abstract data types. It may seem that we are paying a lot of atten

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd