Kruskals algorithm, Data Structure & Algorithms

Assignment Help:

Krushkal's algorithm uses the concept of forest of trees. At first the forest contains n single node trees (and no edges). At each of the step, we add on one (the cheapest one) edge so that it links two trees together. If it makes a cycle, simply it would mean that it links two nodes that were connected already. So, we reject it.

The steps in Kruskal's Algorithm are as:

1.   The forest is constructed through the graph G - along each node as a separate tree in the forest.

2.   The edges are placed within a priority queue.

3.   Do till we have added n-1 edges to the graph,

  I.   Extract the lowest cost edge from the queue.

 II.   If it makes a cycle, then a link already exists among the concerned nodes. So reject it.

 III.  Otherwise add it to the forest. Adding it to the forest will join two trees together.

The forest of trees is a division of the original set of nodes. At first all the trees have exactly one node in them. As the algorithm progresses, we make a union of two of the trees (sub-sets), until the partition has only one sub-set containing all the nodes eventually.

Let us see the sequence of operations to determine the Minimum Cost Spanning Tree(MST) in a graph via Kruskal's algorithm. Suppose the graph of graph shown in figure  and below figure  illustrates the construction of MST of graph of Figure

1339_Kruskals Algorithm.png

Figure: A Graph

Figure: Construction of Minimum Cost Spanning Tree for the Graph by application of Kruskal's algorithm

The following are several steps in the construction of MST for the graph of Figure via Kruskal's algorithm.

Step 1 :  The lowest cost edge is chosen from the graph that is not in MST (initially MST is empty). The cheapest edge is 3 that is added to the MST (illustrated in bold edges)

Step 2: The next cheap edge which is not in MST is added (edge with cost 4).

Step 3 : The next lowest cost edge that is not in MST is added (edge with cost 6).

 Step 4 : The next lowest cost edge that is not in MST is added (edge with cost 7).

Step 5 : The next lowest cost edge that is not in MST is 8 but form a cycle. Hence, it is discarded. The next lowest cost edge 9 is added. Now the MST has all the vertices of the graph. This results in the MST of the original graph.


Related Discussions:- Kruskals algorithm

What is a binary search tree (bst), What is a Binary Search Tree (BST)? ...

What is a Binary Search Tree (BST)? A binary search tree B is a binary tree every node of which satisfies the three conditions: 1.  The value of the left-subtree of 'x' is le

Write a function that performs the integer mod function, Write a function t...

Write a function that performs the integer mod function. Given the previous functions you have implemented already, this one should be a piece of cake. This function will find the

FOLDING METHOD, 12345 SOLVE BY USING FOLDING METHOD

12345 SOLVE BY USING FOLDING METHOD

Abstract data type-stack, Conceptually, the stack abstract data type mimics...

Conceptually, the stack abstract data type mimics the information kept into a pile on a desk. Informally, first we consider a material on a desk, where we might keep separate stack

Insertion of a node into an avl tree, Initially Nodes are inserted in an AV...

Initially Nodes are inserted in an AVL tree in the same manner as an ordinary binary search tree. Though, the insertion algorithm for any AVL tree travels back along with the pa

Efficiency of linear search, Efficiency of Linear Search How much numbe...

Efficiency of Linear Search How much number of comparisons is there in this search in searching for a particular element? The number of comparisons based upon where the reco

Darw a flowchart for inputs number of hours of sunshine, This algorithm inp...

This algorithm inputs number of hours of sunshine recorded every day for a week (7 days). Output is the highest value for hours of sunshine and average (mean) value for numbers of

Two sparce matrices multipilcation algorithm, Write an algorithm for multi...

Write an algorithm for multiplication of two sparse matrices using Linked Lists.

Conversion of forest into tree, Conversion of Forest into Tree A binary...

Conversion of Forest into Tree A binary tree may be used to show an entire forest, since the next pointer in the root of a tree can be used to point to the next tree of the for

..#title, whate is meant by the term heuristic

whate is meant by the term heuristic

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd