Kruskals algorithm, Data Structure & Algorithms

Assignment Help:

Krushkal's algorithm uses the concept of forest of trees. At first the forest contains n single node trees (and no edges). At each of the step, we add on one (the cheapest one) edge so that it links two trees together. If it makes a cycle, simply it would mean that it links two nodes that were connected already. So, we reject it.

The steps in Kruskal's Algorithm are as:

1.   The forest is constructed through the graph G - along each node as a separate tree in the forest.

2.   The edges are placed within a priority queue.

3.   Do till we have added n-1 edges to the graph,

  I.   Extract the lowest cost edge from the queue.

 II.   If it makes a cycle, then a link already exists among the concerned nodes. So reject it.

 III.  Otherwise add it to the forest. Adding it to the forest will join two trees together.

The forest of trees is a division of the original set of nodes. At first all the trees have exactly one node in them. As the algorithm progresses, we make a union of two of the trees (sub-sets), until the partition has only one sub-set containing all the nodes eventually.

Let us see the sequence of operations to determine the Minimum Cost Spanning Tree(MST) in a graph via Kruskal's algorithm. Suppose the graph of graph shown in figure  and below figure  illustrates the construction of MST of graph of Figure

1339_Kruskals Algorithm.png

Figure: A Graph

Figure: Construction of Minimum Cost Spanning Tree for the Graph by application of Kruskal's algorithm

The following are several steps in the construction of MST for the graph of Figure via Kruskal's algorithm.

Step 1 :  The lowest cost edge is chosen from the graph that is not in MST (initially MST is empty). The cheapest edge is 3 that is added to the MST (illustrated in bold edges)

Step 2: The next cheap edge which is not in MST is added (edge with cost 4).

Step 3 : The next lowest cost edge that is not in MST is added (edge with cost 6).

 Step 4 : The next lowest cost edge that is not in MST is added (edge with cost 7).

Step 5 : The next lowest cost edge that is not in MST is 8 but form a cycle. Hence, it is discarded. The next lowest cost edge 9 is added. Now the MST has all the vertices of the graph. This results in the MST of the original graph.


Related Discussions:- Kruskals algorithm

Function performs multiplication of two numbers, You need to write a functi...

You need to write a function that performs multiplication of two numbers in your data structure. Again, remember how you multiply numbers in base 10 and you should be fine. Multipl

Queue, algorithm for insertion in a queue using pointers

algorithm for insertion in a queue using pointers

Deletion, sir how can i explain deletion process in a data structure

sir how can i explain deletion process in a data structure

Determine relevancy and relative position of two polygons, Comparison Techn...

Comparison Techniques There are several techniques for determining the relevancy and relative position of two polygons. Not all tests may be used with all hidden-surface algori

Define graph, A graph is a mathematical structure giving of a set of vertex...

A graph is a mathematical structure giving of a set of vertexes (v1, v2, v3) and a group of edges (e1, e2, e3). An edge is a set of vertexes. The two vertexes are named the edge en

Siso-4bit register, explain working of siso-register to store 1011 and show...

explain working of siso-register to store 1011 and show timing diagram &table

Hashing, what is hashing? what are diffrent method of hashing?

what is hashing? what are diffrent method of hashing?

Define data model, Define data model?  A data model is a collection of ...

Define data model?  A data model is a collection of conceptual tools for explaning data, data relationships, data semantics and consistency constraints.

Complete trees, This is a k-ary position tree wherein all levels are filled...

This is a k-ary position tree wherein all levels are filled from left to right. There are a number of specialized trees. They are binary trees, AVL-trees, binary search trees, 2

What are the dynamic arrays, What are the Dynamic arrays Dynamic arrays...

What are the Dynamic arrays Dynamic arrays are convenient for programmers since they can never be too small-whenever more space is needed in a dynamic array, it can simply be e

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd