Kruskals algorithm, Data Structure & Algorithms

Assignment Help:

Krushkal's algorithm uses the concept of forest of trees. At first the forest contains n single node trees (and no edges). At each of the step, we add on one (the cheapest one) edge so that it links two trees together. If it makes a cycle, simply it would mean that it links two nodes that were connected already. So, we reject it.

The steps in Kruskal's Algorithm are as:

1.   The forest is constructed through the graph G - along each node as a separate tree in the forest.

2.   The edges are placed within a priority queue.

3.   Do till we have added n-1 edges to the graph,

  I.   Extract the lowest cost edge from the queue.

 II.   If it makes a cycle, then a link already exists among the concerned nodes. So reject it.

 III.  Otherwise add it to the forest. Adding it to the forest will join two trees together.

The forest of trees is a division of the original set of nodes. At first all the trees have exactly one node in them. As the algorithm progresses, we make a union of two of the trees (sub-sets), until the partition has only one sub-set containing all the nodes eventually.

Let us see the sequence of operations to determine the Minimum Cost Spanning Tree(MST) in a graph via Kruskal's algorithm. Suppose the graph of graph shown in figure  and below figure  illustrates the construction of MST of graph of Figure

1339_Kruskals Algorithm.png

Figure: A Graph

Figure: Construction of Minimum Cost Spanning Tree for the Graph by application of Kruskal's algorithm

The following are several steps in the construction of MST for the graph of Figure via Kruskal's algorithm.

Step 1 :  The lowest cost edge is chosen from the graph that is not in MST (initially MST is empty). The cheapest edge is 3 that is added to the MST (illustrated in bold edges)

Step 2: The next cheap edge which is not in MST is added (edge with cost 4).

Step 3 : The next lowest cost edge that is not in MST is added (edge with cost 6).

 Step 4 : The next lowest cost edge that is not in MST is added (edge with cost 7).

Step 5 : The next lowest cost edge that is not in MST is 8 but form a cycle. Hence, it is discarded. The next lowest cost edge 9 is added. Now the MST has all the vertices of the graph. This results in the MST of the original graph.


Related Discussions:- Kruskals algorithm

Implement a min-heap, Description A heap is an efficient tree-based data...

Description A heap is an efficient tree-based data structure that can be used as a priority queue. Recall that the abstract data type of a priority queue has the following opera

Applications of the queue, Write down any four applications of the queues. ...

Write down any four applications of the queues.                                                            Ans. A pp li cation of Queue is given below (i)  Queue is

Properties of a red-black tree, Any binary search tree must contain followi...

Any binary search tree must contain following properties to be called as a red-black tree. 1. Each node of a tree should be either red or black. 2. The root node is always bl

Explain about the string abstract data type operations, Explain about the S...

Explain about the String Abstract data type operations Symbol ADT has no concatenation operations, but presuming we have a full-featured String ADT, symbols can be concatenated

Sort wars - sorting algorithm, If quicksort is so quick, why bother with an...

If quicksort is so quick, why bother with anything else? If bubble sort is so bad, why even mention it? For that matter, why are there so many sorting algorithms? Your mission (sho

State about the pre- and post conditions, State about the pre- and post con...

State about the pre- and post conditions Programmers can easily document other pre- and post conditions and class invariants, though, and insert code to check most value preco

Multiple stack, implement multiple stack in single dimensionl array.write a...

implement multiple stack in single dimensionl array.write algorithms for various stack operation for them

Random searching, write aprogram for random -search to implement if a[i]=x;...

write aprogram for random -search to implement if a[i]=x;then terminate other wise continue the search by picking new randon inex into a

Explain principle of optimality, Explain principle of Optimality It ind...

Explain principle of Optimality It indicates that an optimal solution to any instance of an optimization problem is composed of  optimal solutions to its subinstances.

Describe commonly used asymptotic notations, Q.1 Compare two functions n 2 ...

Q.1 Compare two functions n 2 and 2 n for various values of n. Determine when second becomes larger than first. Q.2 Why do we use asymptotic notation in the study of algorit

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd