Kruskals algorithm, Data Structure & Algorithms

Assignment Help:

Krushkal's algorithm uses the concept of forest of trees. At first the forest contains n single node trees (and no edges). At each of the step, we add on one (the cheapest one) edge so that it links two trees together. If it makes a cycle, simply it would mean that it links two nodes that were connected already. So, we reject it.

The steps in Kruskal's Algorithm are as:

1.   The forest is constructed through the graph G - along each node as a separate tree in the forest.

2.   The edges are placed within a priority queue.

3.   Do till we have added n-1 edges to the graph,

  I.   Extract the lowest cost edge from the queue.

 II.   If it makes a cycle, then a link already exists among the concerned nodes. So reject it.

 III.  Otherwise add it to the forest. Adding it to the forest will join two trees together.

The forest of trees is a division of the original set of nodes. At first all the trees have exactly one node in them. As the algorithm progresses, we make a union of two of the trees (sub-sets), until the partition has only one sub-set containing all the nodes eventually.

Let us see the sequence of operations to determine the Minimum Cost Spanning Tree(MST) in a graph via Kruskal's algorithm. Suppose the graph of graph shown in figure  and below figure  illustrates the construction of MST of graph of Figure

1339_Kruskals Algorithm.png

Figure: A Graph

Figure: Construction of Minimum Cost Spanning Tree for the Graph by application of Kruskal's algorithm

The following are several steps in the construction of MST for the graph of Figure via Kruskal's algorithm.

Step 1 :  The lowest cost edge is chosen from the graph that is not in MST (initially MST is empty). The cheapest edge is 3 that is added to the MST (illustrated in bold edges)

Step 2: The next cheap edge which is not in MST is added (edge with cost 4).

Step 3 : The next lowest cost edge that is not in MST is added (edge with cost 6).

 Step 4 : The next lowest cost edge that is not in MST is added (edge with cost 7).

Step 5 : The next lowest cost edge that is not in MST is 8 but form a cycle. Hence, it is discarded. The next lowest cost edge 9 is added. Now the MST has all the vertices of the graph. This results in the MST of the original graph.


Related Discussions:- Kruskals algorithm

Determine in brief the painter algorithm, Determine in brief the Painter A...

Determine in brief the Painter Algorithm a) The farthest polygon, namely the rectangle PQRS, is stored first. (b) The next farthest, the quadrilateral ABCD, is superpo

Explain Hashing, What do you mean by hashing? Hashing gives the direct ...

What do you mean by hashing? Hashing gives the direct access of record from the file no matter where the record is in the file. This is possible with the help of a hashing func

Explain space complexity, Explain Space Complexity Space Complexity :...

Explain Space Complexity Space Complexity :- The space complexity of an algorithm is the amount of memory it requires to run to completion. Some of the reasons to study space

#input restricted DEQUE, #why all the 4 operations i.e. insertion n del...

#why all the 4 operations i.e. insertion n deletion from rear end and front end is valid in input restricted DEQUE

Binary search tree, A binary search tree (BST), which may sometimes also be...

A binary search tree (BST), which may sometimes also be named a sorted or ordered binary tree, is an edge based binary tree data structure which has the following functionalities:

Two sparce matrices multipilcation algorithm, Write an algorithm for multi...

Write an algorithm for multiplication of two sparse matrices using Linked Lists.

Maximum numbers of nodes a binary tree of depth d, Maximum numbers of nodes...

Maximum numbers of nodes a binary tree of depth d The maximum numbers of nodes a binary tree of depth d can have is 2 d+1 -1.

What is gouraud shading, Gouraud Shading The faceted appearance of a La...

Gouraud Shading The faceted appearance of a Lambert shaded model is due to each polygon having only a single colour. To avoid this effect, it is necessary to vary the colour ac

Explain state space tree, Explain State Space Tree If it is convenient ...

Explain State Space Tree If it is convenient to execute backtracking by constructing a tree of choices being made, the tree is known as a state space tree. Its root indicates a

Merging, Merging two sequence using CREW merge

Merging two sequence using CREW merge

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd