Kruskals algorithm, Data Structure & Algorithms

Assignment Help:

Krushkal's algorithm uses the concept of forest of trees. At first the forest contains n single node trees (and no edges). At each of the step, we add on one (the cheapest one) edge so that it links two trees together. If it makes a cycle, simply it would mean that it links two nodes that were connected already. So, we reject it.

The steps in Kruskal's Algorithm are as:

1.   The forest is constructed through the graph G - along each node as a separate tree in the forest.

2.   The edges are placed within a priority queue.

3.   Do till we have added n-1 edges to the graph,

  I.   Extract the lowest cost edge from the queue.

 II.   If it makes a cycle, then a link already exists among the concerned nodes. So reject it.

 III.  Otherwise add it to the forest. Adding it to the forest will join two trees together.

The forest of trees is a division of the original set of nodes. At first all the trees have exactly one node in them. As the algorithm progresses, we make a union of two of the trees (sub-sets), until the partition has only one sub-set containing all the nodes eventually.

Let us see the sequence of operations to determine the Minimum Cost Spanning Tree(MST) in a graph via Kruskal's algorithm. Suppose the graph of graph shown in figure  and below figure  illustrates the construction of MST of graph of Figure

1339_Kruskals Algorithm.png

Figure: A Graph

Figure: Construction of Minimum Cost Spanning Tree for the Graph by application of Kruskal's algorithm

The following are several steps in the construction of MST for the graph of Figure via Kruskal's algorithm.

Step 1 :  The lowest cost edge is chosen from the graph that is not in MST (initially MST is empty). The cheapest edge is 3 that is added to the MST (illustrated in bold edges)

Step 2: The next cheap edge which is not in MST is added (edge with cost 4).

Step 3 : The next lowest cost edge that is not in MST is added (edge with cost 6).

 Step 4 : The next lowest cost edge that is not in MST is added (edge with cost 7).

Step 5 : The next lowest cost edge that is not in MST is 8 but form a cycle. Hence, it is discarded. The next lowest cost edge 9 is added. Now the MST has all the vertices of the graph. This results in the MST of the original graph.


Related Discussions:- Kruskals algorithm

Stack, write pseudocode to implement a queue with two stacks

write pseudocode to implement a queue with two stacks

Preorder - postorder and inorder, 1) preorder, postorder and inorder 2) ...

1) preorder, postorder and inorder 2) The main feature of a Binary Search Tree is that all of the elements whose values is less than the root reside into the nodes of left subtr

Define algorithm, What is an Algorithm? An algorithm is a sequence of u...

What is an Algorithm? An algorithm is a sequence of unambiguous instructions for solving a problem, i.e., for getting a needed output for any legitimate input in a finite amoun

BINARY SEARCH, GIVE TRACE OF BINARY SEARCH ALGORITHM BY USING A SUITABLE EX...

GIVE TRACE OF BINARY SEARCH ALGORITHM BY USING A SUITABLE EXAMPLE.

Structured programming, What do you understand by term structured programmi...

What do you understand by term structured programming? Explain the structured programming as well.                                 Ans. S tructured Programming is expla

Define threaded binary tree, Threaded Binary Tree:- By changing the NUL...

Threaded Binary Tree:- By changing the NULL lines in a binary tree to special links known as threads, it is possible to perform traversal, insertion and deletion without using

Exact analysis of insertion sort, Exact analysis of insertion sort: Let...

Exact analysis of insertion sort: Let us assume the following pseudocode to analyse the exact runtime complexity of insertion sort. T j   is the time taken to execute the s

Algorithm, Define what an algorithm is and outline the characteristics of a...

Define what an algorithm is and outline the characteristics of a good algorithm.

Determine the algorithm for z-buffer method, Algorithm for Z-Buffer Method ...

Algorithm for Z-Buffer Method (a)  Initialize every pixel in the viewport to the smallest value of z, namely z0 the z-value of the rear clipping plane or "back-ground". Store a

List various problem solving techniques, List various problem solving techn...

List various problem solving techniques. There are two techniques:- 1.  Top down 2.  Bottom- up

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd