Kruskals algorithm, Data Structure & Algorithms

Assignment Help:

Krushkal's algorithm uses the concept of forest of trees. At first the forest contains n single node trees (and no edges). At each of the step, we add on one (the cheapest one) edge so that it links two trees together. If it makes a cycle, simply it would mean that it links two nodes that were connected already. So, we reject it.

The steps in Kruskal's Algorithm are as:

1.   The forest is constructed through the graph G - along each node as a separate tree in the forest.

2.   The edges are placed within a priority queue.

3.   Do till we have added n-1 edges to the graph,

  I.   Extract the lowest cost edge from the queue.

 II.   If it makes a cycle, then a link already exists among the concerned nodes. So reject it.

 III.  Otherwise add it to the forest. Adding it to the forest will join two trees together.

The forest of trees is a division of the original set of nodes. At first all the trees have exactly one node in them. As the algorithm progresses, we make a union of two of the trees (sub-sets), until the partition has only one sub-set containing all the nodes eventually.

Let us see the sequence of operations to determine the Minimum Cost Spanning Tree(MST) in a graph via Kruskal's algorithm. Suppose the graph of graph shown in figure  and below figure  illustrates the construction of MST of graph of Figure

1339_Kruskals Algorithm.png

Figure: A Graph

Figure: Construction of Minimum Cost Spanning Tree for the Graph by application of Kruskal's algorithm

The following are several steps in the construction of MST for the graph of Figure via Kruskal's algorithm.

Step 1 :  The lowest cost edge is chosen from the graph that is not in MST (initially MST is empty). The cheapest edge is 3 that is added to the MST (illustrated in bold edges)

Step 2: The next cheap edge which is not in MST is added (edge with cost 4).

Step 3 : The next lowest cost edge that is not in MST is added (edge with cost 6).

 Step 4 : The next lowest cost edge that is not in MST is added (edge with cost 7).

Step 5 : The next lowest cost edge that is not in MST is 8 but form a cycle. Hence, it is discarded. The next lowest cost edge 9 is added. Now the MST has all the vertices of the graph. This results in the MST of the original graph.


Related Discussions:- Kruskals algorithm

Dgsd, Ask question #sdgsdgsdginimum 100 words accepted#

Ask question #sdgsdgsdginimum 100 words accepted#

Types of tree ?, Binary: Each node has one, zero, or two children. This ...

Binary: Each node has one, zero, or two children. This assertion creates many tree operations efficient and simple. Binary Search : A binary tree where each and every left

How will you represent a max-heap sequentially, How will you represent a ma...

How will you represent a max-heap sequentially? Max heap, also known as the descending heap, of size n is an almost complete binary tree of n nodes such that the content of eve

Prims algorithm, how to implement prims algorithm dynamically

how to implement prims algorithm dynamically

Explain avl tree, AVL tree An AVL tree is a binary search tree in which...

AVL tree An AVL tree is a binary search tree in which the height of the left and right subtree of the root vary by at most 1 and in which the left and right subtrees are again

Abstract data types, Abstract Data Types :- A useful tool for specifying th...

Abstract Data Types :- A useful tool for specifying the logical properties of a data type is the abstract data type or ADT. The term "abstract data type" refers to the basic mathem

Program for linear search, Program for Linear Search. Program: Linear S...

Program for Linear Search. Program: Linear Search /*Program for Linear Search*/ /*Header Files*/ #include #include /*Global Variables*/ int search; int

Polynomials, Polynomials like  5x 4    +  2x 3    +  7x 2     +  10x  -  8...

Polynomials like  5x 4    +  2x 3    +  7x 2     +  10x  -  8  can  be  represented by using arrays. Arithmetic operations such as addition & multiplication of polynomials are com

Define ordinary variable, Ordinary variable An ordinary variable of a e...

Ordinary variable An ordinary variable of a easy data type can store a one element only

Avl trees, An AVL tree is a binary search tree that has the given propertie...

An AVL tree is a binary search tree that has the given properties: The sub-tree of each of the node differs in height through at most one. Each sub tree will be an AVL tre

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd