Kruskals algorithm, Data Structure & Algorithms

Assignment Help:

Krushkal's algorithm uses the concept of forest of trees. At first the forest contains n single node trees (and no edges). At each of the step, we add on one (the cheapest one) edge so that it links two trees together. If it makes a cycle, simply it would mean that it links two nodes that were connected already. So, we reject it.

The steps in Kruskal's Algorithm are as:

1.   The forest is constructed through the graph G - along each node as a separate tree in the forest.

2.   The edges are placed within a priority queue.

3.   Do till we have added n-1 edges to the graph,

  I.   Extract the lowest cost edge from the queue.

 II.   If it makes a cycle, then a link already exists among the concerned nodes. So reject it.

 III.  Otherwise add it to the forest. Adding it to the forest will join two trees together.

The forest of trees is a division of the original set of nodes. At first all the trees have exactly one node in them. As the algorithm progresses, we make a union of two of the trees (sub-sets), until the partition has only one sub-set containing all the nodes eventually.

Let us see the sequence of operations to determine the Minimum Cost Spanning Tree(MST) in a graph via Kruskal's algorithm. Suppose the graph of graph shown in figure  and below figure  illustrates the construction of MST of graph of Figure

1339_Kruskals Algorithm.png

Figure: A Graph

Figure: Construction of Minimum Cost Spanning Tree for the Graph by application of Kruskal's algorithm

The following are several steps in the construction of MST for the graph of Figure via Kruskal's algorithm.

Step 1 :  The lowest cost edge is chosen from the graph that is not in MST (initially MST is empty). The cheapest edge is 3 that is added to the MST (illustrated in bold edges)

Step 2: The next cheap edge which is not in MST is added (edge with cost 4).

Step 3 : The next lowest cost edge that is not in MST is added (edge with cost 6).

 Step 4 : The next lowest cost edge that is not in MST is added (edge with cost 7).

Step 5 : The next lowest cost edge that is not in MST is 8 but form a cycle. Hence, it is discarded. The next lowest cost edge 9 is added. Now the MST has all the vertices of the graph. This results in the MST of the original graph.


Related Discussions:- Kruskals algorithm

Algorithm for a function that takes in integer as argument, Write a detaile...

Write a detailed description of a function that takes in an integer as an argument, then prints out the squares of all positive integers whose squares are less than the input. (The

Algorithm to sort a given list by quick sort method, Q. Write down an algor...

Q. Write down an algorithm to sort a given list by making use of Quick sort method. Describe the behaviour of Quick sort when input given to us is already sorted.

Which sorting methods sorting a list which is almost sorted, Which sorting ...

Which sorting methods would be most suitable for sorting a list which is almost sorted  Bubble Sorting method.

Creation of a linked list, Program: Creation of a linked list In the ne...

Program: Creation of a linked list In the next example, wewill look to the process of addition of new nodes to the list with the function create_list(). #include #includ

Explain the term totalling, Explain the term totalling To add up a ser...

Explain the term totalling To add up a series numbers the subsequent type of statement must be used: Total = total + number  This literally means (new) total = (old) t

Difference between prism''s and kruskal''s algorithm, Difference among Pris...

Difference among Prism's and Kruskal's Algorithm In Kruskal's algorithm, the set A is a forest. The safe edge added to A is always a least-weight edge in the paragraph that lin

Define abstract data type & column major ordering for arrays, Q1. Define th...

Q1. Define the following terms: (i) Abstract data type. (ii) Column major ordering for arrays. (iii)  Row major ordering for arrays. Q2. Explain the following: (i) A

Homework, Write a recursive function the computes the number of digits in a...

Write a recursive function the computes the number of digits in a positive integer n. For example if n = 6598, the function should return 4. Find a variant expression and a thresho

Calculate the k-th power and recursive algorithem, 1. The following is a r...

1. The following is a recursive algorithm to calculate the k -th power of 2. Input k a natural number Output kth power of 2 Algorithem: If k =0then return 1 Else return 2* po

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd