Kruskals algorithm, Data Structure & Algorithms

Assignment Help:

Krushkal's algorithm uses the concept of forest of trees. At first the forest contains n single node trees (and no edges). At each of the step, we add on one (the cheapest one) edge so that it links two trees together. If it makes a cycle, simply it would mean that it links two nodes that were connected already. So, we reject it.

The steps in Kruskal's Algorithm are as:

1.   The forest is constructed through the graph G - along each node as a separate tree in the forest.

2.   The edges are placed within a priority queue.

3.   Do till we have added n-1 edges to the graph,

  I.   Extract the lowest cost edge from the queue.

 II.   If it makes a cycle, then a link already exists among the concerned nodes. So reject it.

 III.  Otherwise add it to the forest. Adding it to the forest will join two trees together.

The forest of trees is a division of the original set of nodes. At first all the trees have exactly one node in them. As the algorithm progresses, we make a union of two of the trees (sub-sets), until the partition has only one sub-set containing all the nodes eventually.

Let us see the sequence of operations to determine the Minimum Cost Spanning Tree(MST) in a graph via Kruskal's algorithm. Suppose the graph of graph shown in figure  and below figure  illustrates the construction of MST of graph of Figure

1339_Kruskals Algorithm.png

Figure: A Graph

Figure: Construction of Minimum Cost Spanning Tree for the Graph by application of Kruskal's algorithm

The following are several steps in the construction of MST for the graph of Figure via Kruskal's algorithm.

Step 1 :  The lowest cost edge is chosen from the graph that is not in MST (initially MST is empty). The cheapest edge is 3 that is added to the MST (illustrated in bold edges)

Step 2: The next cheap edge which is not in MST is added (edge with cost 4).

Step 3 : The next lowest cost edge that is not in MST is added (edge with cost 6).

 Step 4 : The next lowest cost edge that is not in MST is added (edge with cost 7).

Step 5 : The next lowest cost edge that is not in MST is 8 but form a cycle. Hence, it is discarded. The next lowest cost edge 9 is added. Now the MST has all the vertices of the graph. This results in the MST of the original graph.


Related Discussions:- Kruskals algorithm

Algorithm, give me algorithm of simple interest

give me algorithm of simple interest

Algorithm for finding a key by binary search technique, Q. Write down an al...

Q. Write down an algorithm for finding a key from a sorted list using the binary search technique or method.

Determine the comparison of gouraud and phong shading, Comparison of Gourau...

Comparison of Gouraud and Phong Shading Phong shading requires more calculations, but produces better results for specular reflection than Gouraud shading in the form of more r

What do you understand by structured programming, What do you understand by...

What do you understand by structured programming Structured Programming  This term is used for programming design that emphasizes:- (1) Hierarchical design of programmi

Queue, 1. Show the effect of each of the following operations on queue q. A...

1. Show the effect of each of the following operations on queue q. Assume that y (type Character) contains the character ‘&’. What are the final values of x and success (type boole

Explain np-complete decision problem, a. Determine the result of inserting ...

a. Determine the result of inserting the keys 4,19, 17, 11, 3, 12, 8, 20, 22, 23, 13, 18, 14, 16, 1, 2, 24, 25, 26, 5 in order to an empty B-Tree of degree 3. Only draw the configu

Operations on sequential files, Insertion: Records has to be inserted at t...

Insertion: Records has to be inserted at the place dictated by the sequence of keys. As is obvious, direct insertions into the main data file would lead to frequent rebuilding of

Red-black trees, A Red-Black Tree (RBT) is a type of Binary Search tree wit...

A Red-Black Tree (RBT) is a type of Binary Search tree with one extra bit of storage per node, i.e. its color that can either be red or black. Now the nodes can have any of the col

Define big oh notation, Big oh notation (O) : The upper bound for the funct...

Big oh notation (O) : The upper bound for the function 'f' is given by the big oh notation (O). Considering 'g' to be a function from the non-negative integers to the positive real

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd