Kruskals algorithm, Data Structure & Algorithms

Assignment Help:

Krushkal's algorithm uses the concept of forest of trees. At first the forest contains n single node trees (and no edges). At each of the step, we add on one (the cheapest one) edge so that it links two trees together. If it makes a cycle, simply it would mean that it links two nodes that were connected already. So, we reject it.

The steps in Kruskal's Algorithm are as:

1.   The forest is constructed through the graph G - along each node as a separate tree in the forest.

2.   The edges are placed within a priority queue.

3.   Do till we have added n-1 edges to the graph,

  I.   Extract the lowest cost edge from the queue.

 II.   If it makes a cycle, then a link already exists among the concerned nodes. So reject it.

 III.  Otherwise add it to the forest. Adding it to the forest will join two trees together.

The forest of trees is a division of the original set of nodes. At first all the trees have exactly one node in them. As the algorithm progresses, we make a union of two of the trees (sub-sets), until the partition has only one sub-set containing all the nodes eventually.

Let us see the sequence of operations to determine the Minimum Cost Spanning Tree(MST) in a graph via Kruskal's algorithm. Suppose the graph of graph shown in figure  and below figure  illustrates the construction of MST of graph of Figure

1339_Kruskals Algorithm.png

Figure: A Graph

Figure: Construction of Minimum Cost Spanning Tree for the Graph by application of Kruskal's algorithm

The following are several steps in the construction of MST for the graph of Figure via Kruskal's algorithm.

Step 1 :  The lowest cost edge is chosen from the graph that is not in MST (initially MST is empty). The cheapest edge is 3 that is added to the MST (illustrated in bold edges)

Step 2: The next cheap edge which is not in MST is added (edge with cost 4).

Step 3 : The next lowest cost edge that is not in MST is added (edge with cost 6).

 Step 4 : The next lowest cost edge that is not in MST is added (edge with cost 7).

Step 5 : The next lowest cost edge that is not in MST is 8 but form a cycle. Hence, it is discarded. The next lowest cost edge 9 is added. Now the MST has all the vertices of the graph. This results in the MST of the original graph.


Related Discussions:- Kruskals algorithm

State phong shading, Phong Shading Phong shading too is based on interp...

Phong Shading Phong shading too is based on interpolation, but instead of interpolating the colour value, it is the normal vector, which is interpolated for each point and a co

The complexity ladder, The complexity Ladder: T(n) = O(1). It is ca...

The complexity Ladder: T(n) = O(1). It is called constant growth. T(n) does not raise at all as a function of n, it is a constant. For illustration, array access has this c

Multidimensional array, Q. The system allocates the memory for any of the m...

Q. The system allocates the memory for any of the multidimensional array from a big single dimensional array. Describe two mapping schemes that help us to store the two dimensi

Example of binary search, Let us assume a file of 5 records that means n = ...

Let us assume a file of 5 records that means n = 5 And k is a sorted array of keys of those 5 records. Let key = 55, low = 0, high = 4 Iteration 1: mid = (0+4)/2 = 2

Applications of shortest path algorithms, The minimum cost spanning tree ha...

The minimum cost spanning tree has broad applications in distinct fields. It represents several complicated real world problems such as: 1. Minimum distance for travelling all o

Postorder traversal of a binary tree, Postorder traversal of a binary tree ...

Postorder traversal of a binary tree struct NODE { struct NODE *left; int value;     /* can take any data type */ struct NODE *right; }; postorder(struct NODE

Explain division method, Explain Division Method Division Method: - In...

Explain Division Method Division Method: - In this method, key K to be mapped into single of the m states in the hash table is divided by m and the remainder of this division

Depth First Search Through Un-weighted Connected Graph , Q. Write down the ...

Q. Write down the algorithm which does depth first search through an un-weighted connected graph. In an un-weighted graph, would breadth first search or depth first search or neith

Implementation of stack using arrays, A Stack has an ordered list of elemen...

A Stack has an ordered list of elements & an array is also utilized to store ordered list of elements. Therefore, it would be very simple to manage a stack by using an array. Thoug

Explain state space tree, Explain State Space Tree If it is convenient ...

Explain State Space Tree If it is convenient to execute backtracking by constructing a tree of choices being made, the tree is known as a state space tree. Its root indicates a

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd