Kruskals algorithm, Data Structure & Algorithms

Assignment Help:

Krushkal's algorithm uses the concept of forest of trees. At first the forest contains n single node trees (and no edges). At each of the step, we add on one (the cheapest one) edge so that it links two trees together. If it makes a cycle, simply it would mean that it links two nodes that were connected already. So, we reject it.

The steps in Kruskal's Algorithm are as:

1.   The forest is constructed through the graph G - along each node as a separate tree in the forest.

2.   The edges are placed within a priority queue.

3.   Do till we have added n-1 edges to the graph,

  I.   Extract the lowest cost edge from the queue.

 II.   If it makes a cycle, then a link already exists among the concerned nodes. So reject it.

 III.  Otherwise add it to the forest. Adding it to the forest will join two trees together.

The forest of trees is a division of the original set of nodes. At first all the trees have exactly one node in them. As the algorithm progresses, we make a union of two of the trees (sub-sets), until the partition has only one sub-set containing all the nodes eventually.

Let us see the sequence of operations to determine the Minimum Cost Spanning Tree(MST) in a graph via Kruskal's algorithm. Suppose the graph of graph shown in figure  and below figure  illustrates the construction of MST of graph of Figure

1339_Kruskals Algorithm.png

Figure: A Graph

Figure: Construction of Minimum Cost Spanning Tree for the Graph by application of Kruskal's algorithm

The following are several steps in the construction of MST for the graph of Figure via Kruskal's algorithm.

Step 1 :  The lowest cost edge is chosen from the graph that is not in MST (initially MST is empty). The cheapest edge is 3 that is added to the MST (illustrated in bold edges)

Step 2: The next cheap edge which is not in MST is added (edge with cost 4).

Step 3 : The next lowest cost edge that is not in MST is added (edge with cost 6).

 Step 4 : The next lowest cost edge that is not in MST is added (edge with cost 7).

Step 5 : The next lowest cost edge that is not in MST is 8 but form a cycle. Hence, it is discarded. The next lowest cost edge 9 is added. Now the MST has all the vertices of the graph. This results in the MST of the original graph.


Related Discussions:- Kruskals algorithm

Bubble sort, Q. The reason bubble sort algorithm is inefficient is that it ...

Q. The reason bubble sort algorithm is inefficient is that it continues execution even after an array is sorted by performing unnecessary comparisons. Therefore, the number of comp

Explain open addressing, Open addressing The easiest way to resolve a c...

Open addressing The easiest way to resolve a collision is to start with the hash address and do a sequential search by the table for an empty location.

Define container in terms of object-oriented terms, Define container in te...

Define container in terms of  object-oriented terms A Container is a broad category whose instances are all more specific things; there is never anything which is just a Contai

Omega notation, The ?-Notation (Lower Bound) This notation provides a l...

The ?-Notation (Lower Bound) This notation provides a lower bound for a function to within a constant factor. We write f(n) = ?(g(n)), if there are positive constants n 0 and

Non-recursive algorithm, Q .  Write down the non-recursive algorithm to tra...

Q .  Write down the non-recursive algorithm to traverse a tree in preorder. Ans: T he Non- Recursive algorithm for preorder traversal is written below: Initially i

Determine the complexity, 1)    The set of the algorithms whose order is O ...

1)    The set of the algorithms whose order is O (1) would run in the identical time.  True/False 2)    Determine the complexity of the following program into big O notation:

find shortest path from a to z using dijkstra''s algorithm., Q.  In the gi...

Q.  In the given figure find the shortest path from A to Z using Dijkstra's Algorithm.    Ans: 1.  P=φ;  T={A,B,C,D,E,F,G,H,I,J,K,L,M,Z} Let L(A)

Avl tree rotations, AVL trees and the nodes it contains must meet strict ba...

AVL trees and the nodes it contains must meet strict balance requirements to maintain O(log n) search time. These balance restrictions are kept maintained via various rotation func

What is diffuse illumination, Diffuse Illumination Diffuse illuminatio...

Diffuse Illumination Diffuse illumination means light that comes from all directions not from one particular source. Think about the light of a grey cloudy day as compared to

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd