Kruskals algorithm, Data Structure & Algorithms

Assignment Help:

Krushkal's algorithm uses the concept of forest of trees. At first the forest contains n single node trees (and no edges). At each of the step, we add on one (the cheapest one) edge so that it links two trees together. If it makes a cycle, simply it would mean that it links two nodes that were connected already. So, we reject it.

The steps in Kruskal's Algorithm are as:

1.   The forest is constructed through the graph G - along each node as a separate tree in the forest.

2.   The edges are placed within a priority queue.

3.   Do till we have added n-1 edges to the graph,

  I.   Extract the lowest cost edge from the queue.

 II.   If it makes a cycle, then a link already exists among the concerned nodes. So reject it.

 III.  Otherwise add it to the forest. Adding it to the forest will join two trees together.

The forest of trees is a division of the original set of nodes. At first all the trees have exactly one node in them. As the algorithm progresses, we make a union of two of the trees (sub-sets), until the partition has only one sub-set containing all the nodes eventually.

Let us see the sequence of operations to determine the Minimum Cost Spanning Tree(MST) in a graph via Kruskal's algorithm. Suppose the graph of graph shown in figure  and below figure  illustrates the construction of MST of graph of Figure

1339_Kruskals Algorithm.png

Figure: A Graph

Figure: Construction of Minimum Cost Spanning Tree for the Graph by application of Kruskal's algorithm

The following are several steps in the construction of MST for the graph of Figure via Kruskal's algorithm.

Step 1 :  The lowest cost edge is chosen from the graph that is not in MST (initially MST is empty). The cheapest edge is 3 that is added to the MST (illustrated in bold edges)

Step 2: The next cheap edge which is not in MST is added (edge with cost 4).

Step 3 : The next lowest cost edge that is not in MST is added (edge with cost 6).

 Step 4 : The next lowest cost edge that is not in MST is added (edge with cost 7).

Step 5 : The next lowest cost edge that is not in MST is 8 but form a cycle. Hence, it is discarded. The next lowest cost edge 9 is added. Now the MST has all the vertices of the graph. This results in the MST of the original graph.


Related Discussions:- Kruskals algorithm

Define graph, A graph is a mathematical structure giving of a set of vertex...

A graph is a mathematical structure giving of a set of vertexes (v1, v2, v3) and a group of edges (e1, e2, e3). An edge is a set of vertexes. The two vertexes are named the edge en

Complexity of an algorithm, What do you mean by complexity of an algorithm?...

What do you mean by complexity of an algorithm? The complexity of an algorithm M is the function f(n) which gives the running time and/or storage space need of the algorithm i

Linked list, write an algorithm for multiplication of two sparse matrices u...

write an algorithm for multiplication of two sparse matrices using Linked Lists

Programme in c to create a single linked list, Q. Write  down a   p...

Q. Write  down a   programme  in  C  to  create  a  single  linked  list also  write the functions to do the following operations (i)  To insert a new node at the end (ii

Sorting, Retrieval of information is made simpler when it is stored into so...

Retrieval of information is made simpler when it is stored into some predefined order. Therefore, Sorting is a very important computer application activity. Several sorting algorit

Write about enterprise manager, Question 1 . Give the structure of PL/SQL B...

Question 1 . Give the structure of PL/SQL Blocks and explain Question 2 . Differentiate between PL/SQL functions and procedures Question 3 . Explain the following Par

How do you find the complexity of an algorithm, How do you find the complex...

How do you find the complexity of an algorithm?  Complexity of an algorithm is the measure of analysis of algorithm. Analyzing an algorithm means predicting the resources that

Linear search, Linear search is not the most efficient way to search an ite...

Linear search is not the most efficient way to search an item within a collection of items. Though, it is extremely simple to implement. Furthermore, if the array elements are arra

Avl tree rotations, AVL trees and the nodes it contains must meet strict ba...

AVL trees and the nodes it contains must meet strict balance requirements to maintain O(log n) search time. These balance restrictions are kept maintained via various rotation func

Explain binary search tree, Binary search tree. A binary search tree is...

Binary search tree. A binary search tree is a binary tree that is either empty or in which every node having a key that satisfies the following conditions: - All keys (if an

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd