Kruskals algorithm, Data Structure & Algorithms

Assignment Help:

Krushkal's algorithm uses the concept of forest of trees. At first the forest contains n single node trees (and no edges). At each of the step, we add on one (the cheapest one) edge so that it links two trees together. If it makes a cycle, simply it would mean that it links two nodes that were connected already. So, we reject it.

The steps in Kruskal's Algorithm are as:

1.   The forest is constructed through the graph G - along each node as a separate tree in the forest.

2.   The edges are placed within a priority queue.

3.   Do till we have added n-1 edges to the graph,

  I.   Extract the lowest cost edge from the queue.

 II.   If it makes a cycle, then a link already exists among the concerned nodes. So reject it.

 III.  Otherwise add it to the forest. Adding it to the forest will join two trees together.

The forest of trees is a division of the original set of nodes. At first all the trees have exactly one node in them. As the algorithm progresses, we make a union of two of the trees (sub-sets), until the partition has only one sub-set containing all the nodes eventually.

Let us see the sequence of operations to determine the Minimum Cost Spanning Tree(MST) in a graph via Kruskal's algorithm. Suppose the graph of graph shown in figure  and below figure  illustrates the construction of MST of graph of Figure

1339_Kruskals Algorithm.png

Figure: A Graph

Figure: Construction of Minimum Cost Spanning Tree for the Graph by application of Kruskal's algorithm

The following are several steps in the construction of MST for the graph of Figure via Kruskal's algorithm.

Step 1 :  The lowest cost edge is chosen from the graph that is not in MST (initially MST is empty). The cheapest edge is 3 that is added to the MST (illustrated in bold edges)

Step 2: The next cheap edge which is not in MST is added (edge with cost 4).

Step 3 : The next lowest cost edge that is not in MST is added (edge with cost 6).

 Step 4 : The next lowest cost edge that is not in MST is added (edge with cost 7).

Step 5 : The next lowest cost edge that is not in MST is 8 but form a cycle. Hence, it is discarded. The next lowest cost edge 9 is added. Now the MST has all the vertices of the graph. This results in the MST of the original graph.


Related Discussions:- Kruskals algorithm

Stack, Explain the array and linked list implementation of stack

Explain the array and linked list implementation of stack

Maximum numbers of nodes a binary tree of depth d, Maximum numbers of nodes...

Maximum numbers of nodes a binary tree of depth d The maximum numbers of nodes a binary tree of depth d can have is 2 d+1 -1.

Darw a flowchart that inputs country someone is visiting, Regis lives in Br...

Regis lives in Brazil and frequently travels to USA, Japan and Europe. He wants to be able to convert Brazilian Reais into US dollars, European euros and Japanese yen. Conversion f

Time complexity, how to learn about time complexity of a particular algorit...

how to learn about time complexity of a particular algorithm

The quick sort algorithm exploit design technique, The quick sort algorithm...

The quick sort algorithm exploit design technique Divide and Conquer

Explain the prim''s minimum spanning tree algorithm, Question 1. Explai...

Question 1. Explain the different types of traversal on binary tree 2. Explain the Prim's minimum spanning tree algorithm 3. Differentiate fixed and variable storage allo

Hash function, Q. Define the graph, adjacency matrix, adjacency list, hash ...

Q. Define the graph, adjacency matrix, adjacency list, hash function, adjacency matrix, sparse matrix, reachability matrix.

Exlain double linked list, Double Linked List In a doubly linked list, ...

Double Linked List In a doubly linked list, also known as 2 way lists, each node is separated into 3 parts. The first part is called last pointer field. It has the address of t

Red black tree, red black tree construction for 4,5,6,7,8,9

red black tree construction for 4,5,6,7,8,9

Prefix and Postfix Expressions, Q.   Draw the expression tree of the infix ...

Q.   Draw the expression tree of the infix expression written below and then  convert it intoPrefix and Postfix expressions. ((a + b) + c * (d + e) + f )* (g + h )

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd