Kruskals algorithm, Data Structure & Algorithms

Assignment Help:

Krushkal's algorithm uses the concept of forest of trees. At first the forest contains n single node trees (and no edges). At each of the step, we add on one (the cheapest one) edge so that it links two trees together. If it makes a cycle, simply it would mean that it links two nodes that were connected already. So, we reject it.

The steps in Kruskal's Algorithm are as:

1.   The forest is constructed through the graph G - along each node as a separate tree in the forest.

2.   The edges are placed within a priority queue.

3.   Do till we have added n-1 edges to the graph,

  I.   Extract the lowest cost edge from the queue.

 II.   If it makes a cycle, then a link already exists among the concerned nodes. So reject it.

 III.  Otherwise add it to the forest. Adding it to the forest will join two trees together.

The forest of trees is a division of the original set of nodes. At first all the trees have exactly one node in them. As the algorithm progresses, we make a union of two of the trees (sub-sets), until the partition has only one sub-set containing all the nodes eventually.

Let us see the sequence of operations to determine the Minimum Cost Spanning Tree(MST) in a graph via Kruskal's algorithm. Suppose the graph of graph shown in figure  and below figure  illustrates the construction of MST of graph of Figure

1339_Kruskals Algorithm.png

Figure: A Graph

Figure: Construction of Minimum Cost Spanning Tree for the Graph by application of Kruskal's algorithm

The following are several steps in the construction of MST for the graph of Figure via Kruskal's algorithm.

Step 1 :  The lowest cost edge is chosen from the graph that is not in MST (initially MST is empty). The cheapest edge is 3 that is added to the MST (illustrated in bold edges)

Step 2: The next cheap edge which is not in MST is added (edge with cost 4).

Step 3 : The next lowest cost edge that is not in MST is added (edge with cost 6).

 Step 4 : The next lowest cost edge that is not in MST is added (edge with cost 7).

Step 5 : The next lowest cost edge that is not in MST is 8 but form a cycle. Hence, it is discarded. The next lowest cost edge 9 is added. Now the MST has all the vertices of the graph. This results in the MST of the original graph.


Related Discussions:- Kruskals algorithm

Insertion sort, It is a naturally occurring sorting method exemplified thro...

It is a naturally occurring sorting method exemplified through a card player arranging the cards dealt to him. He picks up the cards like they are dealt & added them into the neede

Stack making use of the linked list, Q. Implement a stack making use of the...

Q. Implement a stack making use of the linked list. Show the PUSH and POP operations both. A n s . Stack implemantation using linked list # include # include

Stacks, Q. Explain w hat are the stacks? How can we use the stacks  to chec...

Q. Explain w hat are the stacks? How can we use the stacks  to check whether an expression is correctly parentheses or not. For example (()) is well formed but (() or )()( is not w

Conversion of general trees to binary trees, Taking a suitable example expl...

Taking a suitable example explains how a general tree can be shown as a Binary Tree. Conversion of general trees to binary trees: A general tree can be changed into an equiv

#title., Ask quapplication of data structure estion #Minimum 100 words acce...

Ask quapplication of data structure estion #Minimum 100 words accepted#

Exlain double linked list, Double Linked List In a doubly linked list, ...

Double Linked List In a doubly linked list, also known as 2 way lists, each node is separated into 3 parts. The first part is called last pointer field. It has the address of t

Explain circular queues, Circular Queues:- A more efficient queue repre...

Circular Queues:- A more efficient queue representation is get by regarding the array Q(1:n) as circular. It becomes more convenient to declare the array as Q(O: n-1), when  re

A bst is traversed in which order recursively, A  BST is traversed in the ...

A  BST is traversed in the following order recursively: Right, root, left e output sequence will be in In Descending order

Graphs, floyd warshall algorithm

floyd warshall algorithm

Algorithms and flowcharts, write an algorithm and draw a flowchart to calcu...

write an algorithm and draw a flowchart to calculate the perimeter and area of a circle

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd