Kruskals algorithm, Data Structure & Algorithms

Assignment Help:

Krushkal's algorithm uses the concept of forest of trees. At first the forest contains n single node trees (and no edges). At each of the step, we add on one (the cheapest one) edge so that it links two trees together. If it makes a cycle, simply it would mean that it links two nodes that were connected already. So, we reject it.

The steps in Kruskal's Algorithm are as:

1.   The forest is constructed through the graph G - along each node as a separate tree in the forest.

2.   The edges are placed within a priority queue.

3.   Do till we have added n-1 edges to the graph,

  I.   Extract the lowest cost edge from the queue.

 II.   If it makes a cycle, then a link already exists among the concerned nodes. So reject it.

 III.  Otherwise add it to the forest. Adding it to the forest will join two trees together.

The forest of trees is a division of the original set of nodes. At first all the trees have exactly one node in them. As the algorithm progresses, we make a union of two of the trees (sub-sets), until the partition has only one sub-set containing all the nodes eventually.

Let us see the sequence of operations to determine the Minimum Cost Spanning Tree(MST) in a graph via Kruskal's algorithm. Suppose the graph of graph shown in figure  and below figure  illustrates the construction of MST of graph of Figure

1339_Kruskals Algorithm.png

Figure: A Graph

Figure: Construction of Minimum Cost Spanning Tree for the Graph by application of Kruskal's algorithm

The following are several steps in the construction of MST for the graph of Figure via Kruskal's algorithm.

Step 1 :  The lowest cost edge is chosen from the graph that is not in MST (initially MST is empty). The cheapest edge is 3 that is added to the MST (illustrated in bold edges)

Step 2: The next cheap edge which is not in MST is added (edge with cost 4).

Step 3 : The next lowest cost edge that is not in MST is added (edge with cost 6).

 Step 4 : The next lowest cost edge that is not in MST is added (edge with cost 7).

Step 5 : The next lowest cost edge that is not in MST is 8 but form a cycle. Hence, it is discarded. The next lowest cost edge 9 is added. Now the MST has all the vertices of the graph. This results in the MST of the original graph.


Related Discussions:- Kruskals algorithm

Euclidean algorithm, The Euclidean algorithm is an algorithm to decide the ...

The Euclidean algorithm is an algorithm to decide the greatest common divisor of two positive integers. The greatest common divisor of N and M, in short GCD(M,N), is the largest in

Array-based representation of a binary tree, Assume a complete binary tree ...

Assume a complete binary tree T with n nodes where each node has an item (value). Label the nodes of the complete binary tree T from top to bottom & from left to right 0, 1, ..., n

Discrete time simulation of a queue, In this project you will write a progr...

In this project you will write a program to produce a discrete time simulation of a queue as shown in Fig. 1. Time is slotted on the input and the output. Each input packet follows

Minimum cost spanning trees, A spanning tree of any graph is only a subgrap...

A spanning tree of any graph is only a subgraph that keeps all the vertices and is a tree (having no cycle). A graph might have many spanning trees. Figure: A Graph

Pseudocode algorithm to print the numbers from 1 to 10, 1. Write a pseudoco...

1. Write a pseudocode algorithm to print the numbers from 1 to 10, and then from 10 to 1, using exactly one loop. 2. The function contains() takes a food as an argument and tell

Infix expression into the postfix expression, Q. Write down an algorithm to...

Q. Write down an algorithm to convert an infix expression into the postfix expression.     Ans. Algo rithm to convert infix expression to post fix expression is given as

Data structure- tree, Tree is dynamic data structures. Trees can expand & c...

Tree is dynamic data structures. Trees can expand & contract as the program executes and are implemented via pointers. A tree deallocates memory whereas an element is deleted.

Comp. sci algorithms, 1. develop an algorithm which reads two decimal numbe...

1. develop an algorithm which reads two decimal numbers x and y and determines and prints out wether x>y or y>x. the input values, x and y, are whole number > or equal to 0, which

Memory allocation strategies, Q. Explain the various memory allocation stra...

Q. Explain the various memory allocation strategies.                                                            Ans. M e m ory Allocation Strategies are given as follow

List various problem solving techniques, List various problem solving techn...

List various problem solving techniques. There are two techniques:- 1.  Top down 2.  Bottom- up

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd