Kruskals algorithm, Data Structure & Algorithms

Assignment Help:

Krushkal's algorithm uses the concept of forest of trees. At first the forest contains n single node trees (and no edges). At each of the step, we add on one (the cheapest one) edge so that it links two trees together. If it makes a cycle, simply it would mean that it links two nodes that were connected already. So, we reject it.

The steps in Kruskal's Algorithm are as:

1.   The forest is constructed through the graph G - along each node as a separate tree in the forest.

2.   The edges are placed within a priority queue.

3.   Do till we have added n-1 edges to the graph,

  I.   Extract the lowest cost edge from the queue.

 II.   If it makes a cycle, then a link already exists among the concerned nodes. So reject it.

 III.  Otherwise add it to the forest. Adding it to the forest will join two trees together.

The forest of trees is a division of the original set of nodes. At first all the trees have exactly one node in them. As the algorithm progresses, we make a union of two of the trees (sub-sets), until the partition has only one sub-set containing all the nodes eventually.

Let us see the sequence of operations to determine the Minimum Cost Spanning Tree(MST) in a graph via Kruskal's algorithm. Suppose the graph of graph shown in figure  and below figure  illustrates the construction of MST of graph of Figure

1339_Kruskals Algorithm.png

Figure: A Graph

Figure: Construction of Minimum Cost Spanning Tree for the Graph by application of Kruskal's algorithm

The following are several steps in the construction of MST for the graph of Figure via Kruskal's algorithm.

Step 1 :  The lowest cost edge is chosen from the graph that is not in MST (initially MST is empty). The cheapest edge is 3 that is added to the MST (illustrated in bold edges)

Step 2: The next cheap edge which is not in MST is added (edge with cost 4).

Step 3 : The next lowest cost edge that is not in MST is added (edge with cost 6).

 Step 4 : The next lowest cost edge that is not in MST is added (edge with cost 7).

Step 5 : The next lowest cost edge that is not in MST is 8 but form a cycle. Hence, it is discarded. The next lowest cost edge 9 is added. Now the MST has all the vertices of the graph. This results in the MST of the original graph.


Related Discussions:- Kruskals algorithm

Design a binary search tree, Binary Search Tree usage: Write a progra...

Binary Search Tree usage: Write a program to compare the time taken for a search in a skewed tree, a balanced tree, and a random tree. Speci cally, your program should do the

Define the term array, Define the term array. An array is a way to refe...

Define the term array. An array is a way to reference a series of memory locations using the same name. Each memory location is represented by an array element. An  array eleme

Insertion sort, It is a naturally occurring sorting method exemplified thro...

It is a naturally occurring sorting method exemplified through a card player arranging the cards dealt to him. He picks up the cards like they are dealt & added them into the neede

Algorithm, Define what an algorithm is and outline the characteristics of a...

Define what an algorithm is and outline the characteristics of a good algorithm.

Circular linked list, In a circular linked list There is no beginning a...

In a circular linked list There is no beginning and no end.

A full binary tree with 2n+1 nodes, A full binary tree with 2n+1 nodes have...

A full binary tree with 2n+1 nodes have n non-leaf nodes

Indexed sequential files, Indexed Sequential Files An index is inserted...

Indexed Sequential Files An index is inserted to the sequential file to provide random access. An overflow area required to be maintained to permit insertion in sequence. I

Define tractable and intractable problems, Define tractable and intractable...

Define tractable and intractable problems Problems that can be solved in polynomial time are known as tractable problems, problems that cannot be solved in polynomial time are

Write an algorithm to illustrate this repeated calculation, The below formu...

The below formula is used to calculate n: n = (x * x)/ (1 - x). Value x = 0 is used to stop the algorithm. Calculation is repeated using values of x until value x = 0 is input. The

Structures for complete undirected graphs, Q. Draw  the structures of compl...

Q. Draw  the structures of complete  undirected  graphs  on  one,  two,  three,  four  and  five vertices also prove that the number of edges in an n vertex complete graph is n(n-1

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd