Kruskals algorithm, Data Structure & Algorithms

Assignment Help:

Krushkal's algorithm uses the concept of forest of trees. At first the forest contains n single node trees (and no edges). At each of the step, we add on one (the cheapest one) edge so that it links two trees together. If it makes a cycle, simply it would mean that it links two nodes that were connected already. So, we reject it.

The steps in Kruskal's Algorithm are as:

1.   The forest is constructed through the graph G - along each node as a separate tree in the forest.

2.   The edges are placed within a priority queue.

3.   Do till we have added n-1 edges to the graph,

  I.   Extract the lowest cost edge from the queue.

 II.   If it makes a cycle, then a link already exists among the concerned nodes. So reject it.

 III.  Otherwise add it to the forest. Adding it to the forest will join two trees together.

The forest of trees is a division of the original set of nodes. At first all the trees have exactly one node in them. As the algorithm progresses, we make a union of two of the trees (sub-sets), until the partition has only one sub-set containing all the nodes eventually.

Let us see the sequence of operations to determine the Minimum Cost Spanning Tree(MST) in a graph via Kruskal's algorithm. Suppose the graph of graph shown in figure  and below figure  illustrates the construction of MST of graph of Figure

1339_Kruskals Algorithm.png

Figure: A Graph

Figure: Construction of Minimum Cost Spanning Tree for the Graph by application of Kruskal's algorithm

The following are several steps in the construction of MST for the graph of Figure via Kruskal's algorithm.

Step 1 :  The lowest cost edge is chosen from the graph that is not in MST (initially MST is empty). The cheapest edge is 3 that is added to the MST (illustrated in bold edges)

Step 2: The next cheap edge which is not in MST is added (edge with cost 4).

Step 3 : The next lowest cost edge that is not in MST is added (edge with cost 6).

 Step 4 : The next lowest cost edge that is not in MST is added (edge with cost 7).

Step 5 : The next lowest cost edge that is not in MST is 8 but form a cycle. Hence, it is discarded. The next lowest cost edge 9 is added. Now the MST has all the vertices of the graph. This results in the MST of the original graph.


Related Discussions:- Kruskals algorithm

Difference between array and abstract data types, Difference between array ...

Difference between array and abstract data types Arrays aren't abstract data types since their arrangement in the physical memory of a computer is an essential feature of their

Applications of binary trees, In computer programming, Trees are utilized ...

In computer programming, Trees are utilized enormously. These can be utilized for developing database search times (binary search trees, AVL trees, 2-3 trees, red-black trees), Gam

Hash clash, Q. What do you understand by the term by hash clash? Explain in...

Q. What do you understand by the term by hash clash? Explain in detail any one method to resolve the hash collisions.

Operations on b-trees, Operations on B-Trees Given are various operatio...

Operations on B-Trees Given are various operations which can be performed on B-Trees: Search Create Insert B-Tree does effort to minimize disk access and t

Memory allocation strategies, Q. Explain the various memory allocation stra...

Q. Explain the various memory allocation strategies.                                                            Ans. M e m ory Allocation Strategies are given as follow

Er diagram, Ask queConsider the following functional dependencies: Applican...

Ask queConsider the following functional dependencies: Applicant_ID -> Applicant_Name Applicant_ID -> Applicant_Address Position_ID -> Positoin_Title Position_ID -> Date_Position_O

Multiple Queues in a single dimension array, Implement multiple queues in a...

Implement multiple queues in a single dimensional array. Write algorithms for various queue operations for them.

State cmy model, CMY Model  The cyan, magenta, yellow (CMY) colour mode...

CMY Model  The cyan, magenta, yellow (CMY) colour model is a subtractive model based on the colour absorption properties of paints and inks. As such it has become the standard

Describe commonly used asymptotic notations, Q.1 Compare two functions n 2 ...

Q.1 Compare two functions n 2 and 2 n for various values of n. Determine when second becomes larger than first. Q.2 Why do we use asymptotic notation in the study of algorit

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd