Kruskals algorithm, Data Structure & Algorithms

Assignment Help:

Krushkal's algorithm uses the concept of forest of trees. At first the forest contains n single node trees (and no edges). At each of the step, we add on one (the cheapest one) edge so that it links two trees together. If it makes a cycle, simply it would mean that it links two nodes that were connected already. So, we reject it.

The steps in Kruskal's Algorithm are as:

1.   The forest is constructed through the graph G - along each node as a separate tree in the forest.

2.   The edges are placed within a priority queue.

3.   Do till we have added n-1 edges to the graph,

  I.   Extract the lowest cost edge from the queue.

 II.   If it makes a cycle, then a link already exists among the concerned nodes. So reject it.

 III.  Otherwise add it to the forest. Adding it to the forest will join two trees together.

The forest of trees is a division of the original set of nodes. At first all the trees have exactly one node in them. As the algorithm progresses, we make a union of two of the trees (sub-sets), until the partition has only one sub-set containing all the nodes eventually.

Let us see the sequence of operations to determine the Minimum Cost Spanning Tree(MST) in a graph via Kruskal's algorithm. Suppose the graph of graph shown in figure  and below figure  illustrates the construction of MST of graph of Figure

1339_Kruskals Algorithm.png

Figure: A Graph

Figure: Construction of Minimum Cost Spanning Tree for the Graph by application of Kruskal's algorithm

The following are several steps in the construction of MST for the graph of Figure via Kruskal's algorithm.

Step 1 :  The lowest cost edge is chosen from the graph that is not in MST (initially MST is empty). The cheapest edge is 3 that is added to the MST (illustrated in bold edges)

Step 2: The next cheap edge which is not in MST is added (edge with cost 4).

Step 3 : The next lowest cost edge that is not in MST is added (edge with cost 6).

 Step 4 : The next lowest cost edge that is not in MST is added (edge with cost 7).

Step 5 : The next lowest cost edge that is not in MST is 8 but form a cycle. Hence, it is discarded. The next lowest cost edge 9 is added. Now the MST has all the vertices of the graph. This results in the MST of the original graph.


Related Discussions:- Kruskals algorithm

Write an algorithm insert, Q. Write an algorithm INSERT which takes a point...

Q. Write an algorithm INSERT which takes a pointer to a sorted list and a pointer to a node and inserts the node into its correct position or place in the list.  Ans: /* s

Determine in brief about the boolean, Determine in brief about the Boolean ...

Determine in brief about the Boolean Carrier set of the Boolean ADT is the set {true, false}. Operations on these values are negation, conjunction, disjunction, conditional,

Hashing and collisions during hashing, Q. What do you understand by the te...

Q. What do you understand by the term Hashing?  How do the collisions occur during hashing?  Explain the different techniques or methods for resolving the collision.

Sort 5, The number of interchanges needed to sort 5, 1, 6, 2 4 in ascending...

The number of interchanges needed to sort 5, 1, 6, 2 4 in ascending order using Bubble Sort is 5

Demonstration of polynomial using linked list, Demonstration of Polynomial ...

Demonstration of Polynomial using Linked List # include # include Struct link { Char sign; intcoef; int expo; struct link *next; }; Typedefstruct link

What is class invariants assertion, What is Class invariants assertion ...

What is Class invariants assertion A class invariant is an assertion which should be true of any class instance before and after calls of its exported operations. Generally

Implementation of dequeue, Dequeue (a double ended queue) is an abstract da...

Dequeue (a double ended queue) is an abstract data type alike to queue, where insertion and deletion of elements are allowed at both of the ends. Like a linear queue & a circular q

Stack, infix to revrse polish

infix to revrse polish

Define big omega notation, Define Big Omega notation Big Omega notatio...

Define Big Omega notation Big Omega notation (?) : The lower bound for the function 'f' is given by the big omega notation (?). Considering 'g' to be a function from the non-n

Define doubly linked list, A list item stores pointers and an element ...

A list item stores pointers and an element to predecessor and successor. We call a pointer to a list item a handle . This looks simple enough, but pointers are so powerful tha

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd