Kruskals algorithm, Data Structure & Algorithms

Assignment Help:

Krushkal's algorithm uses the concept of forest of trees. At first the forest contains n single node trees (and no edges). At each of the step, we add on one (the cheapest one) edge so that it links two trees together. If it makes a cycle, simply it would mean that it links two nodes that were connected already. So, we reject it.

The steps in Kruskal's Algorithm are as:

1.   The forest is constructed through the graph G - along each node as a separate tree in the forest.

2.   The edges are placed within a priority queue.

3.   Do till we have added n-1 edges to the graph,

  I.   Extract the lowest cost edge from the queue.

 II.   If it makes a cycle, then a link already exists among the concerned nodes. So reject it.

 III.  Otherwise add it to the forest. Adding it to the forest will join two trees together.

The forest of trees is a division of the original set of nodes. At first all the trees have exactly one node in them. As the algorithm progresses, we make a union of two of the trees (sub-sets), until the partition has only one sub-set containing all the nodes eventually.

Let us see the sequence of operations to determine the Minimum Cost Spanning Tree(MST) in a graph via Kruskal's algorithm. Suppose the graph of graph shown in figure  and below figure  illustrates the construction of MST of graph of Figure

1339_Kruskals Algorithm.png

Figure: A Graph

Figure: Construction of Minimum Cost Spanning Tree for the Graph by application of Kruskal's algorithm

The following are several steps in the construction of MST for the graph of Figure via Kruskal's algorithm.

Step 1 :  The lowest cost edge is chosen from the graph that is not in MST (initially MST is empty). The cheapest edge is 3 that is added to the MST (illustrated in bold edges)

Step 2: The next cheap edge which is not in MST is added (edge with cost 4).

Step 3 : The next lowest cost edge that is not in MST is added (edge with cost 6).

 Step 4 : The next lowest cost edge that is not in MST is added (edge with cost 7).

Step 5 : The next lowest cost edge that is not in MST is 8 but form a cycle. Hence, it is discarded. The next lowest cost edge 9 is added. Now the MST has all the vertices of the graph. This results in the MST of the original graph.


Related Discussions:- Kruskals algorithm

Define big theta notation, Define Big Theta notation Big Theta notati...

Define Big Theta notation Big Theta notation (θ) : The upper and lower bound for the function 'f' is given by the big oh notation (θ). Considering 'g' to be a function from t

Linear search, Linear search is not the most efficient way to search an ite...

Linear search is not the most efficient way to search an item within a collection of items. Though, it is extremely simple to implement. Furthermore, if the array elements are arra

Postfix expression, : Write an algorithm to evaluate a postfix expression. ...

: Write an algorithm to evaluate a postfix expression. Execute your algorithm using the following postfix expression as your input: a b + c d +*f ­ .

Nested for loop, nested for loop for (i = 0; i for (j = 0; j seq...

nested for loop for (i = 0; i for (j = 0; j sequence of statements } } Here, we observe that, the outer loop executes n times. Every time the outer loop execute

Insert an element after an element pointed by some pointer, Consider a link...

Consider a linked list of n elements. What is the time taken to insert an element after an element pointed by some pointer? O (1)

The complexity ladder, The complexity Ladder: T(n) = O(1). It is ca...

The complexity Ladder: T(n) = O(1). It is called constant growth. T(n) does not raise at all as a function of n, it is a constant. For illustration, array access has this c

Graphs with negative edge costs, We have discussed that the above Dijkstra'...

We have discussed that the above Dijkstra's single source shortest-path algorithm works for graphs along with non-negative edges (like road networks). Given two scenarios can emerg

Representation of sets?, A set s is conveniently shown in a computer store ...

A set s is conveniently shown in a computer store by its characteristic function C(s). This is an array of logical numbers whose ith element has the meaning "i is present in s". As

Quicksort and bubble sort algorithms, Task If quicksort is so quick, w...

Task If quicksort is so quick, why bother with anything else? If bubble sort is so bad, why even mention it? For that matter, why are there so many sorting algorithms? Your

Red black tree, red black tree construction for 4,5,6,7,8,9

red black tree construction for 4,5,6,7,8,9

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd