Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
One might assume that non-closure under concatenation would imply non closure under both Kleene- and positive closure, since the concatenation of a language with itself is included in its positive closure (that is, L2 ⊆ L+). The intuitive idea is that if we had a counterexample for closure under concatenation that uses just a single language L, then if there was some pair of strings in L2 that invalidates suffx substitution closure-that yields a string not in L2 when the suffx of one is substituted into the other-then that pair would invalidate suffx substitution closure for L* as well. But this argument doesn't work. The fact that the pair yields a string that is not in L2 does not rule out the possibility of string being in Li for some i = 2.
If one thinks in terms of strictly local generation, it should be clear that a language L is strictly 2-local language i? it includes all and only the strings that start with a symbol from some particular subset of Σ and end with a symbol from another such subset, with only particular pairs of adjacent symbols occurring in between-equivalently, some particular set of forbidden pairs not occurring (see Section 3 of Part 1).
Consider, then L+. Strings in L+ will also start and end with symbols from those subsets of Σ and the adjacent pairs of symbols occurring strictly within the string from a given iteration of L will be only those that are permitted. The only di?erence is that there may be additional adjacent pairs where the strings from successive iterations meet. These we can admit by simply permitting them as well. The question is whether they will allow pairs in the middle of a string from L which should be forbidden. But, since we are only adding pairs in which the left symbol is a permissible ending symbol for a string from L and the right symbol is a permissible starting symbol, everywhere such a pair occurs is a permissible boundary between strings of L. Finally, to extend the construction to get L* all we need to do is add the pair ?? as well.
Differentiate between DFA and NFA. Convert the following Regular Expression into DFA. (0+1)*(01*+10*)*(0+1)*. Also write a regular grammar for this DFA.
The class of Strictly Local Languages (in general) is closed under • intersection but is not closed under • union • complement • concatenation • Kleene- and positive
The Recognition Problem for a class of languages is the question of whether a given string is a member of a given language. An instance consists of a string and a (?nite) speci?cat
Application of the general suffix substitution closure theorem is slightly more complicated than application of the specific k-local versions. In the specific versions, all we had
build a TM that enumerate even set of even length string over a
Ask question #Minimum 100 words accepte
what are the advantages and disadvantages of wearable computers?
Ask question #Minimum 20 words accepted#
c program to convert dfa to re
A common approach in solving problems is to transform them to different problems, solve the new ones, and derive the solutions for the original problems from those for the new ones
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd