Kleene closure, Theory of Computation

Assignment Help:

One might assume that non-closure under concatenation would imply non closure under both Kleene- and positive closure, since the concatenation of a language with itself is included in its positive closure (that is, L2 ⊆ L+). The intuitive idea is that if we had a counterexample for closure under concatenation that uses just a single language L, then if there was some pair of strings in L2 that invalidates suffx substitution closure-that yields a string not in L2 when the suffx of one is substituted into the other-then that pair would invalidate suffx substitution closure for L* as well. But this argument doesn't work. The fact that the pair yields a string that is not in L2 does not rule out the possibility of string being in Li for some i = 2.

If one thinks in terms of strictly local generation, it should be clear that a language L is strictly 2-local language i? it includes all and only the strings that start with a symbol from some particular subset of Σ and end with a symbol from another such subset, with only  particular pairs of adjacent symbols occurring in between-equivalently, some particular set of forbidden pairs not occurring (see Section 3 of Part 1).

Consider, then L+. Strings in L+ will also start and end with symbols from those subsets of Σ and the adjacent pairs of symbols occurring strictly within the string from a given iteration of L will be only those that are permitted. The only di?erence is that there may be additional adjacent pairs where the strings from successive iterations meet. These we can admit by simply permitting them as well. The question is whether they will allow pairs in the middle of a string from L which should be forbidden. But, since we are only adding pairs in which the left symbol is a permissible ending symbol for a string from L and the right symbol is a permissible starting symbol, everywhere such a pair occurs is a permissible boundary between strings of L. Finally, to extend the construction to get L* all we need to do is add the pair ?? as well.


Related Discussions:- Kleene closure

Push down automata, Construct a PDA that accepts { x#y | x, y in {a, b}* su...

Construct a PDA that accepts { x#y | x, y in {a, b}* such that x ? y and xi = yi for some i, 1 = i = min(|x|, |y|) }. For your PDA to work correctly it will need to be non-determin

CNF, S-->AAA|B A-->aA|B B-->epsilon

S-->AAA|B A-->aA|B B-->epsilon

Algorithm for the universal recognition problem, Sketch an algorithm for th...

Sketch an algorithm for the universal recognition problem for SL 2 . This takes an automaton and a string and returns TRUE if the string is accepted by the automaton, FALSE otherwi

Powerset construction, As de?ned the powerset construction builds a DFA wit...

As de?ned the powerset construction builds a DFA with many states that can never be reached from Q′ 0 . Since they cannot be reached from Q′ 0 there is no path from Q′ 0 to a sta

Non - sl languages, Application of the general suffix substitution closure ...

Application of the general suffix substitution closure theorem is slightly more complicated than application of the specific k-local versions. In the specific versions, all we had

Computation and languages, When we study computability we are studying prob...

When we study computability we are studying problems in an abstract sense. For example, addition is the problem of, having been given two numbers, returning a third number that is

Venkatesh, What is the arbwnememmsmdbdbfbfjmfksmjejfnfnfnnrndmnfjfjfnrnkrkf...

What is the arbwnememmsmdbdbfbfjmfksmjejfnfnfnnrndmnfjfjfnrnkrkfjfnfmkrjrbfbbfjfnfjruhrvrjkgktithhrbenfkiffnbr ki rnrjjdjrnrk bd n FBC..jcb?????????????????????????????????????????

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd