Kleene closure, Theory of Computation

Assignment Help:

One might assume that non-closure under concatenation would imply non closure under both Kleene- and positive closure, since the concatenation of a language with itself is included in its positive closure (that is, L2 ⊆ L+). The intuitive idea is that if we had a counterexample for closure under concatenation that uses just a single language L, then if there was some pair of strings in L2 that invalidates suffx substitution closure-that yields a string not in L2 when the suffx of one is substituted into the other-then that pair would invalidate suffx substitution closure for L* as well. But this argument doesn't work. The fact that the pair yields a string that is not in L2 does not rule out the possibility of string being in Li for some i = 2.

If one thinks in terms of strictly local generation, it should be clear that a language L is strictly 2-local language i? it includes all and only the strings that start with a symbol from some particular subset of Σ and end with a symbol from another such subset, with only  particular pairs of adjacent symbols occurring in between-equivalently, some particular set of forbidden pairs not occurring (see Section 3 of Part 1).

Consider, then L+. Strings in L+ will also start and end with symbols from those subsets of Σ and the adjacent pairs of symbols occurring strictly within the string from a given iteration of L will be only those that are permitted. The only di?erence is that there may be additional adjacent pairs where the strings from successive iterations meet. These we can admit by simply permitting them as well. The question is whether they will allow pairs in the middle of a string from L which should be forbidden. But, since we are only adding pairs in which the left symbol is a permissible ending symbol for a string from L and the right symbol is a permissible starting symbol, everywhere such a pair occurs is a permissible boundary between strings of L. Finally, to extend the construction to get L* all we need to do is add the pair ?? as well.


Related Discussions:- Kleene closure

Java programming, 1. An integer is said to be a “continuous factored” if it...

1. An integer is said to be a “continuous factored” if it can be expresses as a product of two or more continuous integers greater than 1. Example of continuous factored integers

Closure properties of recognizable languages, We got the class LT by taking...

We got the class LT by taking the class SL and closing it under Boolean operations. We have observed that LT ⊆ Recog, so certainly any Boolean combination of LT languages will also

Algorithm, What is the Best way to write algorithm and construct flow chart...

What is the Best way to write algorithm and construct flow chart? What is Computer? How to construct web page and Designe it?

Decidability, examples of decidable problems

examples of decidable problems

Generalization of the interpretation of local automata, The generalization ...

The generalization of the interpretation of strictly local automata as generators is similar, in some respects, to the generalization of Myhill graphs. Again, the set of possible s

Grammer, write grammer to produce all mathematical expressions in c.

write grammer to produce all mathematical expressions in c.

Pendulum Swings, how many pendulum swings will it take to walk across the c...

how many pendulum swings will it take to walk across the classroom?

Give a strictly 2-local automaton, Let L 3 = {a i bc j | i, j ≥ 0}. Give ...

Let L 3 = {a i bc j | i, j ≥ 0}. Give a strictly 2-local automaton that recognizes L 3 . Use the construction of the proof to extend the automaton to one that recognizes L 3 . Gi

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd