Concept of Speed, Average Speed, Displacement, Velocity, Physics

Assignment Help:

KINEMATICS I

1.   x(t) is called displacement and it denotes the position of the body at a particular time. If the displacement is positive then that body is to the right of the chosen origin and if negative, then it is to the left of the chosen origin.

 

2.   If the body is moving with an average speed v then in the time t it will cover the distance d=vt.

But actually, the speed of a car changes from time to time and so one must limit the use of this formula to the small time differences only. So, more precisely, one defines an average speed over the small time interval is given as Δt:

1841_average speed.png

3.   The instantaneous velocity at any time t is given as:

1398_velocity.png

Where Δx and Δt are both very small quantities which tend to zero but their ratio v does not.

751_velocity1.png

4.   Similar to as we have defined velocity as the rate of change of distance, similarly we can define the instantaneous acceleration at any time t as:

1387_acceleration.png

Where Δv and Δt are both very small quantities which tend to zero but their ratio a is not zero, in general. Negative acceleration is called the deceleration. The speed of the decelerating body decreases with the time.

 

 

5.   Some students gets puzzled by the fact that the body can have a very large acceleration but can be standing still at a given interval of time. Indeed, it can be moving in opposite direction to its acceleration. There is actually nothing weird here because the velocity, position, and acceleration are independent quantities. This means that while specifying one we do not specify the other.

 

 

 

6.   For constant speed and the body which is at point x=0 at time t=0, x rises linearly with the time t,

 

x ∝ t (or x = vt ).

 

If body is at the position x0  at time t = 0, then at time t, x = x0 + vt.

 

7.   For the constant acceleration and a body that begins from rest at t = 0, v increases linearly with the time, v ∝ t (or v = at ). If the body has the speed of v0 at t = 0, then at time t, v = at + v0 .

8.   We know above how far the body is moving at the constant speed moves in time period t. However what if the body is changing its speed constantly? If the speed is increasing linearly (that is constant acceleration), then the answer is particularly simple: just use the same formula as used in the above equation

(6) but use the average speed: (v0 + v0 + at) / 2 . So we get that 8_velocity2.png . This formula tells you that how far a body moves in time interval t if it moves with the constant acceleration a, and if starts at position x0 at t=0 with the speed of v0 .

 

9.   We can eradicate the time using (7) equation, and derive an another useful formula which tells us what the final speed will be after the body has travelled the distance equal to x - x0  after time t, v = v0 + 2a( x - x0 ).

 

10. Vectors, a quantity which has a size as well as direction is called a vector. So, for example, the wind blows with some speed and in some direction. So the wind velocity is a vector.

 

11. If we choose axes, then a vector is fixed by its components along those axes. In one dimension, a vector has only one component (call it the x-component). In two dimensions, a vector has both x and y components. In three dimensions, the components are along the x,y,z axes.

 

12. If we denote a vector G = ( x, y) then, r  = x = r cosθ , and r  = y = r sin θ .

Note that x2 + y 2  = r 2 . Also, that tan θ = y / x.

 

13. Addition of two vectors is possible geometrically. We take any one vector, move

it without changing its direction such that both the vectors initiate from the same point, and then form a parallelogram. The parallelogram's diagonal is the resultant.

2111_acceleration1.png

14. The two vectors can also be added by making use of algebra. In this case, we straight add the components of the two vectors along with each axis separately. So, for instance,

The resultant vector when we put two vectors together as

 (1.5, 2.4) + (1, -1) = (2.5,1.4).


Related Discussions:- Concept of Speed, Average Speed, Displacement, Velocity

Derive the equation of mass energy relationship , The simple equation E = m...

The simple equation E = mc² is not usually applicable to all these types of mass and energy, except in the special case that the total additive momentum is zero for the system unde

Dipole moment and polarization, An electrical dipole is just a separation b...

An electrical dipole is just a separation between a negative and positive charge of the same magnitude. Consider that a dielectric material is exposed to an electrical field. The e

What kinetic energy does it collide into the other sphere, Two faultlessly ...

Two faultlessly conducting spheres are in an evacuated region of space. One is at a potential of -1200 volts as well as the other is at a potential of 1500 volts. A free electron i

Radioactivity, A radioactive substance has a half life of 1 min. If one nuc...

A radioactive substance has a half life of 1 min. If one nuclei decays now , when will be next decay????

Extrapolate the experimental data to predict the pressure, Water at 20°C fl...

Water at 20°C flows through a long, straight pipe. The pressure drop is measured along a section of the pipe of length 1.3 m as a function of average velocity through the pipe. Res

Vectors, i want more clarification on resultant vectors

i want more clarification on resultant vectors

Young modules, to measure the extension of an experimental wire due to diff...

to measure the extension of an experimental wire due to different pulling forces using searle''s apparatues.hence, determine the young modules of the material of the wire.

Expermient of demonstration vernier, Demonstration vernier Two pieces o...

Demonstration vernier Two pieces of tongued and grooved floor board about 1 m long can be used to make this apparatus. Saw 7 cm off the tongued board and glue it into the groov

Explain newtons first law, Explain Newtons First Law An object will rem...

Explain Newtons First Law An object will remain at rest or move with constant velocity until acted upon by a net external force. (A non-accelerating reference frame is known

Quantum., what is quatum number

what is quatum number

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd