Concept of Speed, Average Speed, Displacement, Velocity, Physics

Assignment Help:

KINEMATICS I

1.   x(t) is called displacement and it denotes the position of the body at a particular time. If the displacement is positive then that body is to the right of the chosen origin and if negative, then it is to the left of the chosen origin.

 

2.   If the body is moving with an average speed v then in the time t it will cover the distance d=vt.

But actually, the speed of a car changes from time to time and so one must limit the use of this formula to the small time differences only. So, more precisely, one defines an average speed over the small time interval is given as Δt:

1841_average speed.png

3.   The instantaneous velocity at any time t is given as:

1398_velocity.png

Where Δx and Δt are both very small quantities which tend to zero but their ratio v does not.

751_velocity1.png

4.   Similar to as we have defined velocity as the rate of change of distance, similarly we can define the instantaneous acceleration at any time t as:

1387_acceleration.png

Where Δv and Δt are both very small quantities which tend to zero but their ratio a is not zero, in general. Negative acceleration is called the deceleration. The speed of the decelerating body decreases with the time.

 

 

5.   Some students gets puzzled by the fact that the body can have a very large acceleration but can be standing still at a given interval of time. Indeed, it can be moving in opposite direction to its acceleration. There is actually nothing weird here because the velocity, position, and acceleration are independent quantities. This means that while specifying one we do not specify the other.

 

 

 

6.   For constant speed and the body which is at point x=0 at time t=0, x rises linearly with the time t,

 

x ∝ t (or x = vt ).

 

If body is at the position x0  at time t = 0, then at time t, x = x0 + vt.

 

7.   For the constant acceleration and a body that begins from rest at t = 0, v increases linearly with the time, v ∝ t (or v = at ). If the body has the speed of v0 at t = 0, then at time t, v = at + v0 .

8.   We know above how far the body is moving at the constant speed moves in time period t. However what if the body is changing its speed constantly? If the speed is increasing linearly (that is constant acceleration), then the answer is particularly simple: just use the same formula as used in the above equation

(6) but use the average speed: (v0 + v0 + at) / 2 . So we get that 8_velocity2.png . This formula tells you that how far a body moves in time interval t if it moves with the constant acceleration a, and if starts at position x0 at t=0 with the speed of v0 .

 

9.   We can eradicate the time using (7) equation, and derive an another useful formula which tells us what the final speed will be after the body has travelled the distance equal to x - x0  after time t, v = v0 + 2a( x - x0 ).

 

10. Vectors, a quantity which has a size as well as direction is called a vector. So, for example, the wind blows with some speed and in some direction. So the wind velocity is a vector.

 

11. If we choose axes, then a vector is fixed by its components along those axes. In one dimension, a vector has only one component (call it the x-component). In two dimensions, a vector has both x and y components. In three dimensions, the components are along the x,y,z axes.

 

12. If we denote a vector G = ( x, y) then, r  = x = r cosθ , and r  = y = r sin θ .

Note that x2 + y 2  = r 2 . Also, that tan θ = y / x.

 

13. Addition of two vectors is possible geometrically. We take any one vector, move

it without changing its direction such that both the vectors initiate from the same point, and then form a parallelogram. The parallelogram's diagonal is the resultant.

2111_acceleration1.png

14. The two vectors can also be added by making use of algebra. In this case, we straight add the components of the two vectors along with each axis separately. So, for instance,

The resultant vector when we put two vectors together as

 (1.5, 2.4) + (1, -1) = (2.5,1.4).


Related Discussions:- Concept of Speed, Average Speed, Displacement, Velocity

Photoelectric effect, Photoelectric effect An effect described by A. E...

Photoelectric effect An effect described by A. Einstein that demonstrates that light appears to be built up of photons or particles. Light can do excite electrons (called phot

Illustrate how do you convert from pascal to torr, Q. Illustrate how do you...

Q. Illustrate how do you convert from Pascal to torr? Answer:- Converting the Pascal to the torr The pascal is a slighter unit of pressure than the torr and there are 1

Magnetic induction, A particle with charge q and mass m is shot with K.E ''...

A particle with charge q and mass m is shot with K.E ''k'' into the region between two plates.If magnetic field between plates is B.How large B must be if the particle is to miss c

Standing wave in a closed organ pipe, Organ pipes are the musical instrumen...

Organ pipes are the musical instruments which are used for making musical sound by blowing air into the line. Longitudinal stationary pulses are created on account of superimpositi

Nicol prism, applications of nicol prism

applications of nicol prism

Modulus of elasticity, (a). Modulus of elasticity and modulus of rigidity a...

(a). Modulus of elasticity and modulus of rigidity are important parameters to measure mechanical properties of materials. With the aid of drawings, explain these parameters and gi

Which series describes electron transition for hydrogen atom, For the hydro...

For the hydrogen atom, which series describes electron transitions to the N=1 orbit, the lowest energy electron orbit? Is it the: a)  Lyman series b)  Balmer series

What is head-on collision, HEAD-ON COLLISION:  "If the centers of the c...

HEAD-ON COLLISION:  "If the centers of the colliding bodies stay moving along the similar straight line, the collision is said to be head-on collision".

Find t in terms of d and v, An object that is moving in a straight line wit...

An object that is moving in a straight line with speed v covers a distance, d = vt, in time t. Rewrite the equation to find t in terms of d and v. How long does it take a plane tha

Is the common end is important, Is the common end is important? Even th...

Is the common end is important? Even though manufacturers place extra attention on fibers and illuminators the common end is a very important piece for the correct operation of

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd