Concept of Speed, Average Speed, Displacement, Velocity, Physics

Assignment Help:

KINEMATICS I

1.   x(t) is called displacement and it denotes the position of the body at a particular time. If the displacement is positive then that body is to the right of the chosen origin and if negative, then it is to the left of the chosen origin.

 

2.   If the body is moving with an average speed v then in the time t it will cover the distance d=vt.

But actually, the speed of a car changes from time to time and so one must limit the use of this formula to the small time differences only. So, more precisely, one defines an average speed over the small time interval is given as Δt:

1841_average speed.png

3.   The instantaneous velocity at any time t is given as:

1398_velocity.png

Where Δx and Δt are both very small quantities which tend to zero but their ratio v does not.

751_velocity1.png

4.   Similar to as we have defined velocity as the rate of change of distance, similarly we can define the instantaneous acceleration at any time t as:

1387_acceleration.png

Where Δv and Δt are both very small quantities which tend to zero but their ratio a is not zero, in general. Negative acceleration is called the deceleration. The speed of the decelerating body decreases with the time.

 

 

5.   Some students gets puzzled by the fact that the body can have a very large acceleration but can be standing still at a given interval of time. Indeed, it can be moving in opposite direction to its acceleration. There is actually nothing weird here because the velocity, position, and acceleration are independent quantities. This means that while specifying one we do not specify the other.

 

 

 

6.   For constant speed and the body which is at point x=0 at time t=0, x rises linearly with the time t,

 

x ∝ t (or x = vt ).

 

If body is at the position x0  at time t = 0, then at time t, x = x0 + vt.

 

7.   For the constant acceleration and a body that begins from rest at t = 0, v increases linearly with the time, v ∝ t (or v = at ). If the body has the speed of v0 at t = 0, then at time t, v = at + v0 .

8.   We know above how far the body is moving at the constant speed moves in time period t. However what if the body is changing its speed constantly? If the speed is increasing linearly (that is constant acceleration), then the answer is particularly simple: just use the same formula as used in the above equation

(6) but use the average speed: (v0 + v0 + at) / 2 . So we get that 8_velocity2.png . This formula tells you that how far a body moves in time interval t if it moves with the constant acceleration a, and if starts at position x0 at t=0 with the speed of v0 .

 

9.   We can eradicate the time using (7) equation, and derive an another useful formula which tells us what the final speed will be after the body has travelled the distance equal to x - x0  after time t, v = v0 + 2a( x - x0 ).

 

10. Vectors, a quantity which has a size as well as direction is called a vector. So, for example, the wind blows with some speed and in some direction. So the wind velocity is a vector.

 

11. If we choose axes, then a vector is fixed by its components along those axes. In one dimension, a vector has only one component (call it the x-component). In two dimensions, a vector has both x and y components. In three dimensions, the components are along the x,y,z axes.

 

12. If we denote a vector G = ( x, y) then, r  = x = r cosθ , and r  = y = r sin θ .

Note that x2 + y 2  = r 2 . Also, that tan θ = y / x.

 

13. Addition of two vectors is possible geometrically. We take any one vector, move

it without changing its direction such that both the vectors initiate from the same point, and then form a parallelogram. The parallelogram's diagonal is the resultant.

2111_acceleration1.png

14. The two vectors can also be added by making use of algebra. In this case, we straight add the components of the two vectors along with each axis separately. So, for instance,

The resultant vector when we put two vectors together as

 (1.5, 2.4) + (1, -1) = (2.5,1.4).


Related Discussions:- Concept of Speed, Average Speed, Displacement, Velocity

What are the pumping schemes, What are the pumping schemes? Pumping Sch...

What are the pumping schemes? Pumping Schemes: a. Optical pumping through photons b. Electrical pumping through electric glow discharge/electric current/electron beam

Estimate the power, An engineer is making an estimate for a home owner. Thi...

An engineer is making an estimate for a home owner. This owner has a small stream (Q = 1.4 cfs, T = 40°F) that is located at an elevation H = 34 ft above the owner's residence. The

Reflection problem , 2 upright plane mirrors are 4 meters apart and facing ...

2 upright plane mirrors are 4 meters apart and facing each other. A man stands 1 meter in front of them. Determine the distance between the second images in the mirror

Voltmeters, Voltmeters: Voltmeters are used to measure emf's and more c...

Voltmeters: Voltmeters are used to measure emf's and more commonly potential differences. The two probes of the meter are therefore connected to the two points between which th

Explain the lenz law, Explain the Lenz Law An induced current always fl...

Explain the Lenz Law An induced current always flows in a direction so that its electromagnetic field opposes the change in magnetic flux producing it. This is embodied in the

Control structure amd its parts(if, i have to make an assignment on this to...

i have to make an assignment on this topic plz suggest me how can i make this?

Electromagnetic induction, how to prepare a working model on electromagneti...

how to prepare a working model on electromagnetic induction?

Derive the mathematical expression for refractive index, Derive the mathema...

Derive the mathematical expression for refractive index in terms of the angle of the prism and angle of minimum deviation.

Heat therapy - b-infrared (ir) radiant heat, B-Infrared (IR)  Radiant Heat...

B-Infrared (IR)  Radiant Heat Heat radiation can be achieved by using infrared (IR) radiation it penetrates about 3mm in the skin. excessive exposure can cause erythema(redden

How many neutrons are in nucleus, An isotope of iodine (Z = 53) is used to ...

An isotope of iodine (Z = 53) is used to treat thyroid conditions. Its mass number is 131. How many neutrons are in its nucleus?   131 - 53 = 78 neutrons

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd