K-means cluster analysis, Advanced Statistics

Assignment Help:

K-means cluster analysis is the method of cluster analysis in which from an initial partition of observations into K clusters, each observation in turn is analysed and reassigned, if suitable, to a different cluster in an attempt to optimize some predefined numerical criterion that measures in some sense the 'quality' of cluster solution. Several such clustering criteria have been suggested, but the most usually used arise from considering the features of the within groups, between groups and whole matrices of sums of squares and the cross products (W, B, T) which can be described for every partition of the observations into the particular number of groups. The two most ordinary of the clustering criteria developing from these matrices are given as follows

minimization of trace W

minimization of determinant W

The first of these has tendency to produce the 'spherical' clusters, the second to produce clusters that all have same shape, though this will not necessarily be spherical in shape. 

 


Related Discussions:- K-means cluster analysis

Classification and regression tree technique (cart), Classification and reg...

Classification and regression tree technique (CART): The alternative to the multiple regression and associated techniques or methods for determining subsets of the explanatory va

Cluster sampling, Cluster sampling : A method or technique of sampling in w...

Cluster sampling : A method or technique of sampling in which the members of the population are arranged in groups (called as 'clusters'). A number of clusters are selected at the

Tracking, Tracking is the term sometimes used in the discussions of data f...

Tracking is the term sometimes used in the discussions of data from the longitudinal study, to describe the ability to predict the subsequent observations from previous values. In

General location model, The model for data containing continuous and catego...

The model for data containing continuous and categorical variables both.The categorical data are summarized by the contingency table and their marginal distribution, 182by the mult

Reasons for screening data, Reasons for screening data     Garbage i...

Reasons for screening data     Garbage in-garbage out     Missing data          a. Amount of missing data is less crucial than the pattern of it. If randomly

Determine the probablity, Dr. Stallter has been teaching basic statistics f...

Dr. Stallter has been teaching basic statistics for many years. She knows that 80% of the students will complete the assigned problems. She has also determined that among those who

What is harris and stevens forecasting, Harris and Stevens forecasting is ...

Harris and Stevens forecasting is the method of making short term forecasts in the time series which is subject to abrupt changes in pattern and the transient effects. Instances o

Scatter plots, The scatter plot of SRES1 versus totexp demonstrates that th...

The scatter plot of SRES1 versus totexp demonstrates that there is non-linear relationship that exists as most of the points are below and above zero. The scatter plot show that th

Traditional linear model, What is a Generalized Linear Model? A traditional...

What is a Generalized Linear Model? A traditional linear model is of the form where Yi is the response variable for the ith observation, xi is a column vector of explanator

Doob meyer decomposition, A theorem which shows that any counting process m...

A theorem which shows that any counting process may be uniquely decomposed as the sum of a martingale and a predictable, right-continous process called the compensator, assuming ce

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd