K-means cluster analysis, Advanced Statistics

Assignment Help:

K-means cluster analysis is the method of cluster analysis in which from an initial partition of observations into K clusters, each observation in turn is analysed and reassigned, if suitable, to a different cluster in an attempt to optimize some predefined numerical criterion that measures in some sense the 'quality' of cluster solution. Several such clustering criteria have been suggested, but the most usually used arise from considering the features of the within groups, between groups and whole matrices of sums of squares and the cross products (W, B, T) which can be described for every partition of the observations into the particular number of groups. The two most ordinary of the clustering criteria developing from these matrices are given as follows

minimization of trace W

minimization of determinant W

The first of these has tendency to produce the 'spherical' clusters, the second to produce clusters that all have same shape, though this will not necessarily be spherical in shape. 

 


Related Discussions:- K-means cluster analysis

Rejection Region (graded), How is the rejection region defined and how is t...

How is the rejection region defined and how is that related to the z-score and the p value? When do you reject or fail to reject the null hypothesis? Why do you think statisticians

Lagrange multipliertest, The Null Hypothesis - H0:  There is autocorrelatio...

The Null Hypothesis - H0:  There is autocorrelation The Alternative Hypothesis - H1: There is no autocorrelation Rejection Criteria: Reject H0 (n-s)R 2 > = (1515 - 4) x (0.

Gaussian process, The generalization of the normal distribution used for th...

The generalization of the normal distribution used for the characterization of functions. It is known as a Gaussian process because it has Gaussian distributed finite dimensional m

Hill-climbing algorithm, Hill-climbing algorithm is  an algorithm which is ...

Hill-climbing algorithm is  an algorithm which is made in use in those techniques of cluster analysis which seek to find the partition of n individuals into g clusters by optimizin

Define least significant difference test, Least significant difference test...

Least significant difference test is an approach to comparing a set of means which controls the family wise error rate at some specific level, let's assume it to be α. The hypothe

Explain kolmogorov smirnov two-sample method, Kolmogorov Smirnov two-sample...

Kolmogorov Smirnov two-sample method is a distribution free technique which tests for any difference between the two populations probability distributions. The test is relied on t

Solve this, An analyst counted 17 A/B runs and 26 time series observations....

An analyst counted 17 A/B runs and 26 time series observations. Do these results suggest that the data are nonrandom? Explain

Explain household interview surveys, Household interview surveys : The surv...

Household interview surveys : The surveys in which the primary sampling units are typically geographic regions such as nations or cities. For each such unit sampled, there are addi

Explain literature controls, Literature controls : The patients with the di...

Literature controls : The patients with the disease of interest who have received, in the past, one of two treatments under the investigation, and for whom the results have been pu

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd