K-means cluster analysis, Advanced Statistics

Assignment Help:

K-means cluster analysis is the method of cluster analysis in which from an initial partition of observations into K clusters, each observation in turn is analysed and reassigned, if suitable, to a different cluster in an attempt to optimize some predefined numerical criterion that measures in some sense the 'quality' of cluster solution. Several such clustering criteria have been suggested, but the most usually used arise from considering the features of the within groups, between groups and whole matrices of sums of squares and the cross products (W, B, T) which can be described for every partition of the observations into the particular number of groups. The two most ordinary of the clustering criteria developing from these matrices are given as follows

minimization of trace W

minimization of determinant W

The first of these has tendency to produce the 'spherical' clusters, the second to produce clusters that all have same shape, though this will not necessarily be spherical in shape. 

 


Related Discussions:- K-means cluster analysis

Student, the problem that demonstrates inference from two dependent samples...

the problem that demonstrates inference from two dependent samples uses hypothetical data from TB vaccinations and the number of new cases before and after vaccinations for cases o

Omitted covariates, Omitted covariates is a term generally found in the co...

Omitted covariates is a term generally found in the connection with regression modelling, where the model has been incompletely specified by not including significant covariates.

Institutional surveys, Institutional surveys are the surveys in which the ...

Institutional surveys are the surveys in which the primary sampling units are the institutions, for instance, hospitals. Within each of the sampled institution, a sample of the pa

Describe multiple imputation, Multiple imputation : The Monte Carlo techniq...

Multiple imputation : The Monte Carlo technique in which missing values in the data set are replaced by m> 1 simulated versions, where m is usually small (say 3-10). Each of simula

Classification and regression tree technique (cart), Classification and reg...

Classification and regression tree technique (CART): The alternative to the multiple regression and associated techniques or methods for determining subsets of the explanatory va

Generalized estimating equations (gee), Technically the multivariate analog...

Technically the multivariate analogue of the quasi-likelihood with the same feature that it leads to consistent inferences about the mean responses without needing specific supposi

Ascertainment bias, Ascertainment bias : A feasible form of bias, particula...

Ascertainment bias : A feasible form of bias, particularly in the retrospective studies, which arises from the relationship between the exposure to the risk factor and the probabil

Traditional linear model, What is a Generalized Linear Model? A traditional...

What is a Generalized Linear Model? A traditional linear model is of the form where Yi is the response variable for the ith observation, xi is a column vector of explanator

Staitistics project, I need a statistics project done. How much will it cos...

I need a statistics project done. How much will it cost?

Obuchowski and rockette method, Obuchowski and Rockette method  is an alter...

Obuchowski and Rockette method  is an alternative to the Dorfman-Berbaum-Metz technique for analyzing multiple reader receiver operating curve data. Instead of the modelling the ja

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd