Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Ion mobility:
Ion mobility is related to molar conductivity by the equations:
which allows the mobilities, u+ and u- of the cation and anion to be determined from molar conductivity measurements at and away from infinite dilution. z+ and z- are the formal charges of the cation and anion respectively, so z+F and |z-F| are the magnitudes of the charges on a mole of cations and anions. The mobility is always positive (+) and is a measure of the terminal migration speed of an ion per unit applied electric field. This limiting speed is accelerating due to the field is exactly balanced by the viscous drag of the ions moving through the solution which for a spherical ions lead to the equations:
where e is the charge on the electron (-), so ze is the charge on the ions, η is the viscosity, a constant for any solvents which determines how easy it is for the ion to part the solvent molecule and move through solution and a is the hydrodynamic radius of the solvated ion.
H+/OH- mobility:
Hydroxide and Protons ions have anomalously high ionic molar conductivities and mobilities in comparison to all ions, and in particular for their size. That is as a result of the mechanism by which they move through solution, called the Grotthus mechanism (Fig. 1).
Fig. 1. The Grotthus mechanism for (a) H+; (b) OH- ion motion in water. The arrows indicate the concerted proton movement when the field is applied.
Introduction This lab will be performed using the Chemistry Collective Virtual Lab Simulator. The ChemCollective is an award winning chemistry online resource. In addition to
Lanthanide contraction
why lanthanide series is called lanthanide?
FTIR instrumentation
What is electromeyric effect
Q. What do you mean by Chemical Bonding? Ans. Atoms react chemically by losing, gaining or sharing electrons. Chemical bonds are the attractive forces that hold atoms toge
principles of voltammetry
Calculate de-Broglie wavelength of an electron travelling at 1% of the speed of light: (1) 2.73 x 10- 24 (2) 2.42 x 10 -10 (3) 242.2x 10- 10
Free-radical mechanism: Free-radical polymerisation is started by organic peroxide or other reagents that decompose to give free radicals.
Boiling point -physical characteristics of carbonyl compound The boiling points of aldehydes and ketones are high as compared to those of non polar compounds (hydrocarbons) or
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd