Inverse tangent, Mathematics

Assignment Help:

Inverse Tangent : Following is the definition of the inverse tangent.

 y = tan -1 x     ⇔ tan y = x                     for            -∏/2 ≤ y ≤ ?/2

Again, we have a limitation on y, however notice that we can't allow y be either of the two endpoints in the limitation above since tangent isn't even described at those two points. In order to convince yourself that this range will cover all possible values of tangent do a quick sketch of the tangent function and we can see that in this range we do indeed cover all possible values of tangent. Also, in this case there is no limitation on x since tangent can take on all possible values.

Example   Evaluate tan -1 1

Solution : Following we are asking,

                                                              tan y =1

where y satisfies the limitation given above.  From a unit circle we can illustrated that

 y = ∏ /4.

Since there is no limitation on x we can ask for the limits of the inverse tangent function as x goes to plus or minus infinity.  In order to do this we'll require the graph of the inverse tangent function. This is illustrated below.

1329_inverse tangent.png

From this graph we can illustrates that

1944_inverse tengent1.png

The tangent & inverse tangent functions are inverse functions hence,

tan ( tan -1 x )= x                          tan -1 ( tan x ) =x

Thus to determine the derivative of the inverse tangent function we can begin with

f ( x ) = tan x                                                  g ( x ) = tan -1 x

Then we have,

g′ ( x ) =        1            /f ′ ( g ( x )) = sec2 (tan -1 x )

Simplifying the denominator is alike to the inverse sine, however different sufficient to warrant illustrating the details. We'll begin with the definition of the inverse tangent.

                                        y = tan -1 x  ⇒ tan y = x

Then the denominator is,

                                         sec2 (tan -1 x ) = sec2  y

Now, if we begin with the fact that

                                         cos2  y + sin 2  y = 1

and divide every term by cos2 y we will get,

                                          1 + tan 2  y = sec2  y

Then the denominator is,

 sec2 (tan -1 x ) = sec2  y = 1 + tan 2  y

At last by using the second portion of the definition of the inverse tangent function specified us,

                                       sec2 ( tan -1 x ) = 1 + tan 2  y = 1 + x2

Then the derivative of the inverse tangent is,

                                d (tan -1 x ) / dx =1 /1 + x2

There are three more inverse trig functions however the three illustrated here the most common ones. Formulas for remaining three could be derived through a similar procedure as we did those above.

Following are the derivatives of all six inverse trig functions.

1061_inverse tangent2.png


Related Discussions:- Inverse tangent

Arc length formula - applications of integrals, Arc length Formula L = ...

Arc length Formula L = ∫ ds Where ds √ (1+ (dy/dx) 2 ) dx                                     if y = f(x), a x b ds √ (1+ (dx/dy) 2 ) dy

Caselets, how are indian customers visiting shoppers stop any different fro...

how are indian customers visiting shoppers stop any different from customers of developed western countries

Krystal, what is the tenths place

what is the tenths place

What is the opec, What is the OPEC? - The Organization of the Petroleum Exp...

What is the OPEC? - The Organization of the Petroleum Exporting Countries, a coordination group of petrol producers The Organization for Peace and Economic Cooperation, a German le

Evaluate the volume of a ball, Evaluate the volume of a ball whose radius i...

Evaluate the volume of a ball whose radius is 4 inches? Round to the nearest inch. (π = 3.14) a. 201 in 3 b. 268 in 3 c. 804 in 3 d. 33 in 3 b. The volume of a

Explain multiples, Explain Multiples ? When a whole number is multiplie...

Explain Multiples ? When a whole number is multiplied by another whole number, the results you get are multiples of the whole numbers. For example,  To find the first four mult

Linear equations, Linear Equations We'll begin the solving portion of ...

Linear Equations We'll begin the solving portion of this chapter by solving linear equations. Standard form of a linear equation: A linear equation is any equation whi

Systems of equations revisited, Systems of Equations Revisited We requ...

Systems of Equations Revisited We require doing a quick revisit of systems of equations. Let's establish with a general system of equations. a 11 x 1 + a 12 x 2 +......

Vectors, If r,R denote position vectors of points on the straight lines in ...

If r,R denote position vectors of points on the straight lines in the direction of a and b respectively, and if n is a unit vector perpendicular to both these directions, show that

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd