Inverse tangent, Mathematics

Assignment Help:

Inverse Tangent : Following is the definition of the inverse tangent.

 y = tan -1 x     ⇔ tan y = x                     for            -∏/2 ≤ y ≤ ?/2

Again, we have a limitation on y, however notice that we can't allow y be either of the two endpoints in the limitation above since tangent isn't even described at those two points. In order to convince yourself that this range will cover all possible values of tangent do a quick sketch of the tangent function and we can see that in this range we do indeed cover all possible values of tangent. Also, in this case there is no limitation on x since tangent can take on all possible values.

Example   Evaluate tan -1 1

Solution : Following we are asking,

                                                              tan y =1

where y satisfies the limitation given above.  From a unit circle we can illustrated that

 y = ∏ /4.

Since there is no limitation on x we can ask for the limits of the inverse tangent function as x goes to plus or minus infinity.  In order to do this we'll require the graph of the inverse tangent function. This is illustrated below.

1329_inverse tangent.png

From this graph we can illustrates that

1944_inverse tengent1.png

The tangent & inverse tangent functions are inverse functions hence,

tan ( tan -1 x )= x                          tan -1 ( tan x ) =x

Thus to determine the derivative of the inverse tangent function we can begin with

f ( x ) = tan x                                                  g ( x ) = tan -1 x

Then we have,

g′ ( x ) =        1            /f ′ ( g ( x )) = sec2 (tan -1 x )

Simplifying the denominator is alike to the inverse sine, however different sufficient to warrant illustrating the details. We'll begin with the definition of the inverse tangent.

                                        y = tan -1 x  ⇒ tan y = x

Then the denominator is,

                                         sec2 (tan -1 x ) = sec2  y

Now, if we begin with the fact that

                                         cos2  y + sin 2  y = 1

and divide every term by cos2 y we will get,

                                          1 + tan 2  y = sec2  y

Then the denominator is,

 sec2 (tan -1 x ) = sec2  y = 1 + tan 2  y

At last by using the second portion of the definition of the inverse tangent function specified us,

                                       sec2 ( tan -1 x ) = 1 + tan 2  y = 1 + x2

Then the derivative of the inverse tangent is,

                                d (tan -1 x ) / dx =1 /1 + x2

There are three more inverse trig functions however the three illustrated here the most common ones. Formulas for remaining three could be derived through a similar procedure as we did those above.

Following are the derivatives of all six inverse trig functions.

1061_inverse tangent2.png


Related Discussions:- Inverse tangent

Polynomials, zeroes of polynomial 2x2-3x-2

zeroes of polynomial 2x2-3x-2

Mortgages, compute the monthly payment on a 30 year level payment mortagage...

compute the monthly payment on a 30 year level payment mortagagesasuming an annual mortgages principal of $400000

Find out ratio, the sides of a right angle triangle are a,a+d,a+2d with a a...

the sides of a right angle triangle are a,a+d,a+2d with a and d both positive.the ratio of a to d  a)1:2 b)1:3 c)3:1 d)5:2 answer is (c) i.e. 3:1 Solution: Applying

Rational and irrational numbers, RATIONAL NUMBERS All numbers of the ty...

RATIONAL NUMBERS All numbers of the type p/q where p and q are integer and q ≠0, are known as rational. Thus  it can be noticed that every integer is a rational number

#title.automotive cruise control system., What are some of the interestingm...

What are some of the interestingmodern developments in cruise control systems that contrast with comparatively basic old systems

What is the probability that they will both come to a party, Q.  Suppose th...

Q.  Suppose the probability of David coming to a party is 75% and the probability of Jason coming to a party is 85%. What is the probability that they will both come to a party, a

Example of elps maths learning, Do you agree with the necessity of the sequ...

Do you agree with the necessity of the sequencing E - L - P - S for learning? If not, then what do you suggest as an alternative path for understanding and internalising mathematic

Tutoring , hi, i was wondering how do you provide tutoring for math specifi...

hi, i was wondering how do you provide tutoring for math specifically discrete mathematics for computer science ? I want to get some help in understanding in the meantime about alg

Matlab, how i found largest cluster in percolation

how i found largest cluster in percolation

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd