Inverse tangent, Mathematics

Assignment Help:

Inverse Tangent : Following is the definition of the inverse tangent.

 y = tan -1 x     ⇔ tan y = x                     for            -∏/2 ≤ y ≤ ?/2

Again, we have a limitation on y, however notice that we can't allow y be either of the two endpoints in the limitation above since tangent isn't even described at those two points. In order to convince yourself that this range will cover all possible values of tangent do a quick sketch of the tangent function and we can see that in this range we do indeed cover all possible values of tangent. Also, in this case there is no limitation on x since tangent can take on all possible values.

Example   Evaluate tan -1 1

Solution : Following we are asking,

                                                              tan y =1

where y satisfies the limitation given above.  From a unit circle we can illustrated that

 y = ∏ /4.

Since there is no limitation on x we can ask for the limits of the inverse tangent function as x goes to plus or minus infinity.  In order to do this we'll require the graph of the inverse tangent function. This is illustrated below.

1329_inverse tangent.png

From this graph we can illustrates that

1944_inverse tengent1.png

The tangent & inverse tangent functions are inverse functions hence,

tan ( tan -1 x )= x                          tan -1 ( tan x ) =x

Thus to determine the derivative of the inverse tangent function we can begin with

f ( x ) = tan x                                                  g ( x ) = tan -1 x

Then we have,

g′ ( x ) =        1            /f ′ ( g ( x )) = sec2 (tan -1 x )

Simplifying the denominator is alike to the inverse sine, however different sufficient to warrant illustrating the details. We'll begin with the definition of the inverse tangent.

                                        y = tan -1 x  ⇒ tan y = x

Then the denominator is,

                                         sec2 (tan -1 x ) = sec2  y

Now, if we begin with the fact that

                                         cos2  y + sin 2  y = 1

and divide every term by cos2 y we will get,

                                          1 + tan 2  y = sec2  y

Then the denominator is,

 sec2 (tan -1 x ) = sec2  y = 1 + tan 2  y

At last by using the second portion of the definition of the inverse tangent function specified us,

                                       sec2 ( tan -1 x ) = 1 + tan 2  y = 1 + x2

Then the derivative of the inverse tangent is,

                                d (tan -1 x ) / dx =1 /1 + x2

There are three more inverse trig functions however the three illustrated here the most common ones. Formulas for remaining three could be derived through a similar procedure as we did those above.

Following are the derivatives of all six inverse trig functions.

1061_inverse tangent2.png


Related Discussions:- Inverse tangent

How many teachers are there at russell high, There are 81 women teachers at...

There are 81 women teachers at Russell High. If 45% of the teachers in the school are women, how many teachers are there at Russell High? Use the proportion part/whole = %/100.

Probablity, probability as that of flipping a coin eight times and getting ...

probability as that of flipping a coin eight times and getting all the times the same side of the coin.)

Marketing mix, 1) Identify key characteristics of product or services and e...

1) Identify key characteristics of product or services and estimate their significance to the market 2) Identify and analyse level of customer service provision to determine its si

Basic statistics, #questio Study A Stu...

#questio Study A Study B Study C x2 = 1.683 F = 7.357 r = .83 df = 4

Fractions, How do you add 7/9 + 6/8 + 3/4

How do you add 7/9 + 6/8 + 3/4

Computerised payroll package, How to calculate costs if you have a computer...

How to calculate costs if you have a computerised payroll package for your large business?

Problem word solving, Mrs. Jones and Mr. Graham had the same amount of mone...

Mrs. Jones and Mr. Graham had the same amount of money at first. After Mrs. Jones bought a computer that cost $2,055, she had 1/4 as much money as Mr. Graham. How much money di

Variance, Variance Consider the example of investment opportunities. Th...

Variance Consider the example of investment opportunities. The expected gains were Rs.114 and Rs.81 respectively. The fact is that an investor also looks at the dispersion befo

Determines the angles of depression, A pilot is flying over a straight leng...

A pilot is flying over a straight length of road. He determines the angles of depression of two mileposts, 5 miles apart, to be 32° and 48°. a) Find the distance of the plane f

Differential equations, Find the normalized differential equation which has...

Find the normalized differential equation which has {x, xex} as its fundamental set

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd