Inverse tangent, Mathematics

Assignment Help:

Inverse Tangent : Following is the definition of the inverse tangent.

 y = tan -1 x     ⇔ tan y = x                     for            -∏/2 ≤ y ≤ ?/2

Again, we have a limitation on y, however notice that we can't allow y be either of the two endpoints in the limitation above since tangent isn't even described at those two points. In order to convince yourself that this range will cover all possible values of tangent do a quick sketch of the tangent function and we can see that in this range we do indeed cover all possible values of tangent. Also, in this case there is no limitation on x since tangent can take on all possible values.

Example   Evaluate tan -1 1

Solution : Following we are asking,

                                                              tan y =1

where y satisfies the limitation given above.  From a unit circle we can illustrated that

 y = ∏ /4.

Since there is no limitation on x we can ask for the limits of the inverse tangent function as x goes to plus or minus infinity.  In order to do this we'll require the graph of the inverse tangent function. This is illustrated below.

1329_inverse tangent.png

From this graph we can illustrates that

1944_inverse tengent1.png

The tangent & inverse tangent functions are inverse functions hence,

tan ( tan -1 x )= x                          tan -1 ( tan x ) =x

Thus to determine the derivative of the inverse tangent function we can begin with

f ( x ) = tan x                                                  g ( x ) = tan -1 x

Then we have,

g′ ( x ) =        1            /f ′ ( g ( x )) = sec2 (tan -1 x )

Simplifying the denominator is alike to the inverse sine, however different sufficient to warrant illustrating the details. We'll begin with the definition of the inverse tangent.

                                        y = tan -1 x  ⇒ tan y = x

Then the denominator is,

                                         sec2 (tan -1 x ) = sec2  y

Now, if we begin with the fact that

                                         cos2  y + sin 2  y = 1

and divide every term by cos2 y we will get,

                                          1 + tan 2  y = sec2  y

Then the denominator is,

 sec2 (tan -1 x ) = sec2  y = 1 + tan 2  y

At last by using the second portion of the definition of the inverse tangent function specified us,

                                       sec2 ( tan -1 x ) = 1 + tan 2  y = 1 + x2

Then the derivative of the inverse tangent is,

                                d (tan -1 x ) / dx =1 /1 + x2

There are three more inverse trig functions however the three illustrated here the most common ones. Formulas for remaining three could be derived through a similar procedure as we did those above.

Following are the derivatives of all six inverse trig functions.

1061_inverse tangent2.png


Related Discussions:- Inverse tangent

Algebraic expressions, how to simplify an expression which has different si...

how to simplify an expression which has different signs

Find the equation of circle concentric – coordinate geometry, 1. A point P(...

1. A point P(a,b) becomes (3,c) after reflection in x - axis, and (d,6) after reflection in the origin. Show that a = 3, b = - 6, c = 6, d = 2 2. If the pair of lines ax² + 2pxy

Pythagorean theorem, How do you find the perimeter of an irregular shape us...

How do you find the perimeter of an irregular shape using Pythagorean theorem?

What is the length of the longer base, The longer base of a trapezoid is th...

The longer base of a trapezoid is three times the shorter base. The nonparallel sides are congruent. The nonparallel side is 5 cm more that the shorter base. The perimeter of the t

Explain similar figures in similarity, Explain Similar Figures in similarit...

Explain Similar Figures in similarity ? Similar figures are figures that have the same shape but not necessarily the same size, so the image of a figure is similar to the orig

3D Trigometry problems, I have difficuties in working out those 3D trigomen...

I have difficuties in working out those 3D trigomentry problems within teh shortest possible time. Are there any tricks to get through such problems as soon as possible?

Supply/demand, For the pair of supply-and-demand equations, where x represe...

For the pair of supply-and-demand equations, where x represents the quantity demanded in units of 1000 and p is the unit price in dollars, find the equilibrium quantity and the equ

Math, Verify Louisville''s formula for y "-y" - y'' + y = 0 in (0, 1) quest...

Verify Louisville''s formula for y "-y" - y'' + y = 0 in (0, 1) question..

Find common denominators, Q. Find Common Denominators? What does it mea...

Q. Find Common Denominators? What does it mean? Say you have two fractions, like 1/3 and 8/21 And they have different denominators (3 and 21). Sometimes, you'd prefer

Most crucial aspect of learning multiplication, Which of the following is t...

Which of the following is the most crucial aspect of learning multiplication? i) Multiplication facts ii) Recall of tables and their recitation iii) Understanding "how man

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd