Inverse tangent, Mathematics

Assignment Help:

Inverse Tangent : Following is the definition of the inverse tangent.

 y = tan -1 x     ⇔ tan y = x                     for            -∏/2 ≤ y ≤ ?/2

Again, we have a limitation on y, however notice that we can't allow y be either of the two endpoints in the limitation above since tangent isn't even described at those two points. In order to convince yourself that this range will cover all possible values of tangent do a quick sketch of the tangent function and we can see that in this range we do indeed cover all possible values of tangent. Also, in this case there is no limitation on x since tangent can take on all possible values.

Example   Evaluate tan -1 1

Solution : Following we are asking,

                                                              tan y =1

where y satisfies the limitation given above.  From a unit circle we can illustrated that

 y = ∏ /4.

Since there is no limitation on x we can ask for the limits of the inverse tangent function as x goes to plus or minus infinity.  In order to do this we'll require the graph of the inverse tangent function. This is illustrated below.

1329_inverse tangent.png

From this graph we can illustrates that

1944_inverse tengent1.png

The tangent & inverse tangent functions are inverse functions hence,

tan ( tan -1 x )= x                          tan -1 ( tan x ) =x

Thus to determine the derivative of the inverse tangent function we can begin with

f ( x ) = tan x                                                  g ( x ) = tan -1 x

Then we have,

g′ ( x ) =        1            /f ′ ( g ( x )) = sec2 (tan -1 x )

Simplifying the denominator is alike to the inverse sine, however different sufficient to warrant illustrating the details. We'll begin with the definition of the inverse tangent.

                                        y = tan -1 x  ⇒ tan y = x

Then the denominator is,

                                         sec2 (tan -1 x ) = sec2  y

Now, if we begin with the fact that

                                         cos2  y + sin 2  y = 1

and divide every term by cos2 y we will get,

                                          1 + tan 2  y = sec2  y

Then the denominator is,

 sec2 (tan -1 x ) = sec2  y = 1 + tan 2  y

At last by using the second portion of the definition of the inverse tangent function specified us,

                                       sec2 ( tan -1 x ) = 1 + tan 2  y = 1 + x2

Then the derivative of the inverse tangent is,

                                d (tan -1 x ) / dx =1 /1 + x2

There are three more inverse trig functions however the three illustrated here the most common ones. Formulas for remaining three could be derived through a similar procedure as we did those above.

Following are the derivatives of all six inverse trig functions.

1061_inverse tangent2.png


Related Discussions:- Inverse tangent

Compute the volume and surface area of a right circular cone, Compute the v...

Compute the volume and surface area of a right circular cone: Compute the volume and surface area of a right circular cone along with r =  3", h = 4", and l = 5".  Be sure to

History of Mathematics, What are the key features of Greek Mathematics? How...

What are the key features of Greek Mathematics? How does the emphasis on proof affect the development of Greek Mathematics?

Graphing linear equtions, Determine whether each equation is a linear equat...

Determine whether each equation is a linear equation. If yes, write the equation in standard form. y=2x+5

Construction, draw a line OX=10CM and construct an angle xoy = 60. (b)bisec...

draw a line OX=10CM and construct an angle xoy = 60. (b)bisect the angle xoy and mark a point A on the bisector so that OA = 7cm

Word problem, A jet flew at an average speed of 480mph from Point X to Poin...

A jet flew at an average speed of 480mph from Point X to Point Y. Because of head winds, the jet averaged only 440mph on the return trip, and the return trip took 25 minutes longer

In terms of x what is the area of her garden, Laura has a rectangular garde...

Laura has a rectangular garden whose width is x 3 and whose length is x4. In terms of x, what is the area of her garden? Since the area of a rectangle is A = length times widt

ADDING AND SUBTRACTING EQUATION, GUESS THE NUMBER THAT WHEN YOU SUBTRACT 6 ...

GUESS THE NUMBER THAT WHEN YOU SUBTRACT 6 AND THEN SUBTRACT 0 IS-14

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd