Inverse tangent, Mathematics

Assignment Help:

Inverse Tangent : Following is the definition of the inverse tangent.

 y = tan -1 x     ⇔ tan y = x                     for            -∏/2 ≤ y ≤ ?/2

Again, we have a limitation on y, however notice that we can't allow y be either of the two endpoints in the limitation above since tangent isn't even described at those two points. In order to convince yourself that this range will cover all possible values of tangent do a quick sketch of the tangent function and we can see that in this range we do indeed cover all possible values of tangent. Also, in this case there is no limitation on x since tangent can take on all possible values.

Example   Evaluate tan -1 1

Solution : Following we are asking,

                                                              tan y =1

where y satisfies the limitation given above.  From a unit circle we can illustrated that

 y = ∏ /4.

Since there is no limitation on x we can ask for the limits of the inverse tangent function as x goes to plus or minus infinity.  In order to do this we'll require the graph of the inverse tangent function. This is illustrated below.

1329_inverse tangent.png

From this graph we can illustrates that

1944_inverse tengent1.png

The tangent & inverse tangent functions are inverse functions hence,

tan ( tan -1 x )= x                          tan -1 ( tan x ) =x

Thus to determine the derivative of the inverse tangent function we can begin with

f ( x ) = tan x                                                  g ( x ) = tan -1 x

Then we have,

g′ ( x ) =        1            /f ′ ( g ( x )) = sec2 (tan -1 x )

Simplifying the denominator is alike to the inverse sine, however different sufficient to warrant illustrating the details. We'll begin with the definition of the inverse tangent.

                                        y = tan -1 x  ⇒ tan y = x

Then the denominator is,

                                         sec2 (tan -1 x ) = sec2  y

Now, if we begin with the fact that

                                         cos2  y + sin 2  y = 1

and divide every term by cos2 y we will get,

                                          1 + tan 2  y = sec2  y

Then the denominator is,

 sec2 (tan -1 x ) = sec2  y = 1 + tan 2  y

At last by using the second portion of the definition of the inverse tangent function specified us,

                                       sec2 ( tan -1 x ) = 1 + tan 2  y = 1 + x2

Then the derivative of the inverse tangent is,

                                d (tan -1 x ) / dx =1 /1 + x2

There are three more inverse trig functions however the three illustrated here the most common ones. Formulas for remaining three could be derived through a similar procedure as we did those above.

Following are the derivatives of all six inverse trig functions.

1061_inverse tangent2.png


Related Discussions:- Inverse tangent

Explain that odd positive integer to be a perfect square, Show that for odd...

Show that for odd positive integer to be a perfect square, it should be of the form 8k +1. Let a=2m+1 Ans: Squaring both sides we get a2 = 4m (m +1) + 1 ∴ product of two

Give the introduction to scientific notation, Give the Introduction to Scie...

Give the Introduction to Scientific Notation? In mathematics, it can be very difficult and time-consuming to do calculations involving very large and very small numbers. This i

G .E matrix, using the g.e matrix, how can you turn an unattractive product...

using the g.e matrix, how can you turn an unattractive product to be attractive

Solve the second order differential equations, Solve the subsequent IVP ...

Solve the subsequent IVP Y'' - 9 y = 0, y(0) = 2, y'(0) = -1 Solution First, the two functions  y (t ) = e 3t  and  y(t ) = e -3t That is "nice enough" for us to

Evaluate the measure of the smallest angle, The calculation of the angles o...

The calculation of the angles of a triangle are shown by 2x + 15, x + 20 and 3x + 25. Evaluate the measure of the smallest angle within the triangle. a. 40° b. 85° c. 25°

Calculate the net amount and distance, 1. A train on the Bay Area Rapid Tra...

1. A train on the Bay Area Rapid Transit system has the ability to accelerate to 80 miles/hour in half a minute. A.   Express the acceleration in miles per hour per minute. B

Construct a venn diagram, In a survey of 85 people this is found that 31 wa...

In a survey of 85 people this is found that 31 want to drink milk 43 like coffee and 39 wish tea.  As well 13 want both milk and tea, 15 like milk & coffee, 20 like tea and coffee

Range of f(x) =4^x+2^x+1 is, Taking 2^x=m and solving the quadratic for get...

Taking 2^x=m and solving the quadratic for getting D>=0 we get range= [3/4 , infinity )

What is conditional probability, Q. What is Conditional Probability? A...

Q. What is Conditional Probability? Ans. What is the probability that George will pass his math test if he studies? We can assume that the probabilities of George passing

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd