Inverse tangent, Mathematics

Assignment Help:

Inverse Tangent : Following is the definition of the inverse tangent.

 y = tan -1 x     ⇔ tan y = x                     for            -∏/2 ≤ y ≤ ?/2

Again, we have a limitation on y, however notice that we can't allow y be either of the two endpoints in the limitation above since tangent isn't even described at those two points. In order to convince yourself that this range will cover all possible values of tangent do a quick sketch of the tangent function and we can see that in this range we do indeed cover all possible values of tangent. Also, in this case there is no limitation on x since tangent can take on all possible values.

Example   Evaluate tan -1 1

Solution : Following we are asking,

                                                              tan y =1

where y satisfies the limitation given above.  From a unit circle we can illustrated that

 y = ∏ /4.

Since there is no limitation on x we can ask for the limits of the inverse tangent function as x goes to plus or minus infinity.  In order to do this we'll require the graph of the inverse tangent function. This is illustrated below.

1329_inverse tangent.png

From this graph we can illustrates that

1944_inverse tengent1.png

The tangent & inverse tangent functions are inverse functions hence,

tan ( tan -1 x )= x                          tan -1 ( tan x ) =x

Thus to determine the derivative of the inverse tangent function we can begin with

f ( x ) = tan x                                                  g ( x ) = tan -1 x

Then we have,

g′ ( x ) =        1            /f ′ ( g ( x )) = sec2 (tan -1 x )

Simplifying the denominator is alike to the inverse sine, however different sufficient to warrant illustrating the details. We'll begin with the definition of the inverse tangent.

                                        y = tan -1 x  ⇒ tan y = x

Then the denominator is,

                                         sec2 (tan -1 x ) = sec2  y

Now, if we begin with the fact that

                                         cos2  y + sin 2  y = 1

and divide every term by cos2 y we will get,

                                          1 + tan 2  y = sec2  y

Then the denominator is,

 sec2 (tan -1 x ) = sec2  y = 1 + tan 2  y

At last by using the second portion of the definition of the inverse tangent function specified us,

                                       sec2 ( tan -1 x ) = 1 + tan 2  y = 1 + x2

Then the derivative of the inverse tangent is,

                                d (tan -1 x ) / dx =1 /1 + x2

There are three more inverse trig functions however the three illustrated here the most common ones. Formulas for remaining three could be derived through a similar procedure as we did those above.

Following are the derivatives of all six inverse trig functions.

1061_inverse tangent2.png


Related Discussions:- Inverse tangent

Decimals, how will the decimal point move when 245.398 is multiplied by 10

how will the decimal point move when 245.398 is multiplied by 10

Algebra, Manuel is a cross-country runner for his school’s team. He jogged ...

Manuel is a cross-country runner for his school’s team. He jogged along the perimeter of a rectangular field at his school. The track is a rectangle that has a length that is 3 tim

Find out the value of the subsequent summation, Using the formulas and prop...

Using the formulas and properties from above find out the value of the subsequent summation. c The first thing that we require to do here is square out the stuff being summe

Polynomial : f(x).f(1/x), A polynomial satisfies the following relation f(x...

A polynomial satisfies the following relation f(x).f(1/x)= f(x)+f(1/x). f(2) = 33. fIND f(3) Ans) The required polynomial is x^5 +1. This polynomial satisfies the condition state

Solution to a differential equation, A solution to a differential equation ...

A solution to a differential equation at an interval α Illustration 1:   Show that y(x) = x -3/2 is a solution to 4x 2 y′′ + 12xy′ + 3 y = 0 for x > 0. Solution : We'll

Law of cosines - vector, Theorem a → • b → = ||a → || ||b → || cos• ...

Theorem a → • b → = ||a → || ||b → || cos• Proof Let us give a modified version of the diagram above. The three vectors above make the triangle AOB and note tha

Sphere and cone, How tall does a cone with diameter of 10 inches have to be...

How tall does a cone with diameter of 10 inches have to be to fit exactly half of a sphere with a diameter of 10 inches inside it?

Pde, i find paper that has sam my homework which i need it, in you website...

i find paper that has sam my homework which i need it, in you website , is that mean you have already the solution of that ?

Tangents with parametric equations - polar coordinates, Tangents with Param...

Tangents with Parametric Equations In this part we want to find out the tangent lines to the parametric equations given by X= f (t) Y = g (t) To do this let's first r

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd