Inverse tangent, Mathematics

Assignment Help:

Inverse Tangent : Following is the definition of the inverse tangent.

 y = tan -1 x     ⇔ tan y = x                     for            -∏/2 ≤ y ≤ ?/2

Again, we have a limitation on y, however notice that we can't allow y be either of the two endpoints in the limitation above since tangent isn't even described at those two points. In order to convince yourself that this range will cover all possible values of tangent do a quick sketch of the tangent function and we can see that in this range we do indeed cover all possible values of tangent. Also, in this case there is no limitation on x since tangent can take on all possible values.

Example   Evaluate tan -1 1

Solution : Following we are asking,

                                                              tan y =1

where y satisfies the limitation given above.  From a unit circle we can illustrated that

 y = ∏ /4.

Since there is no limitation on x we can ask for the limits of the inverse tangent function as x goes to plus or minus infinity.  In order to do this we'll require the graph of the inverse tangent function. This is illustrated below.

1329_inverse tangent.png

From this graph we can illustrates that

1944_inverse tengent1.png

The tangent & inverse tangent functions are inverse functions hence,

tan ( tan -1 x )= x                          tan -1 ( tan x ) =x

Thus to determine the derivative of the inverse tangent function we can begin with

f ( x ) = tan x                                                  g ( x ) = tan -1 x

Then we have,

g′ ( x ) =        1            /f ′ ( g ( x )) = sec2 (tan -1 x )

Simplifying the denominator is alike to the inverse sine, however different sufficient to warrant illustrating the details. We'll begin with the definition of the inverse tangent.

                                        y = tan -1 x  ⇒ tan y = x

Then the denominator is,

                                         sec2 (tan -1 x ) = sec2  y

Now, if we begin with the fact that

                                         cos2  y + sin 2  y = 1

and divide every term by cos2 y we will get,

                                          1 + tan 2  y = sec2  y

Then the denominator is,

 sec2 (tan -1 x ) = sec2  y = 1 + tan 2  y

At last by using the second portion of the definition of the inverse tangent function specified us,

                                       sec2 ( tan -1 x ) = 1 + tan 2  y = 1 + x2

Then the derivative of the inverse tangent is,

                                d (tan -1 x ) / dx =1 /1 + x2

There are three more inverse trig functions however the three illustrated here the most common ones. Formulas for remaining three could be derived through a similar procedure as we did those above.

Following are the derivatives of all six inverse trig functions.

1061_inverse tangent2.png


Related Discussions:- Inverse tangent

Calculate values of kinetics , A reaction following first-order kinetics wa...

A reaction following first-order kinetics was studied by determining the reactant concentrations at equal time intervals. Each successive pair of concentrations, [A] o and [A] 1

Algebra, how do i sole linear epuation

how do i sole linear epuation

The parallelogram, love is a parallelogram where prove that is a rectangle...

love is a parallelogram where prove that is a rectangle

The low temperature in Achorage, The low temperature in Anchorage, Alaska t...

The low temperature in Anchorage, Alaska today was negative four degrees. The low temperature in Los Angeles, California was sixty-three degreees. What is the difference in the two

The volume and surface area of this solid , The region bounded by y=e -x a...

The region bounded by y=e -x and the x-axis among x = 0 and x = 1 is revolved around the x-axis. Determine the volume and surface area of this solid of revolution.

Circle, in one point of the circle only one tangent can be drawn. prove

in one point of the circle only one tangent can be drawn. prove

Trignometry, whta are the formulas needed for proving in trignometry .

whta are the formulas needed for proving in trignometry .

Advantages and limitations of game theory, Advantages And Limitations Of Ga...

Advantages And Limitations Of Game Theory Advantage Game theory assists us to learn how to approach and understand a conflict condition and to develop the decision making

Find out general formula for tangent vector and unit vector, Find out the g...

Find out the general formula for the tangent vector and unit tangent vector to the curve specified by r → (t) = t 2 i → + 2 sin t j → + 2 cos t k → . Solution First,

Prisms, i have to find surface,lateral,and volume

i have to find surface,lateral,and volume

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd