Inverse tangent, Mathematics

Assignment Help:

Inverse Tangent : Following is the definition of the inverse tangent.

 y = tan -1 x     ⇔ tan y = x                     for            -∏/2 ≤ y ≤ ?/2

Again, we have a limitation on y, however notice that we can't allow y be either of the two endpoints in the limitation above since tangent isn't even described at those two points. In order to convince yourself that this range will cover all possible values of tangent do a quick sketch of the tangent function and we can see that in this range we do indeed cover all possible values of tangent. Also, in this case there is no limitation on x since tangent can take on all possible values.

Example   Evaluate tan -1 1

Solution : Following we are asking,

                                                              tan y =1

where y satisfies the limitation given above.  From a unit circle we can illustrated that

 y = ∏ /4.

Since there is no limitation on x we can ask for the limits of the inverse tangent function as x goes to plus or minus infinity.  In order to do this we'll require the graph of the inverse tangent function. This is illustrated below.

1329_inverse tangent.png

From this graph we can illustrates that

1944_inverse tengent1.png

The tangent & inverse tangent functions are inverse functions hence,

tan ( tan -1 x )= x                          tan -1 ( tan x ) =x

Thus to determine the derivative of the inverse tangent function we can begin with

f ( x ) = tan x                                                  g ( x ) = tan -1 x

Then we have,

g′ ( x ) =        1            /f ′ ( g ( x )) = sec2 (tan -1 x )

Simplifying the denominator is alike to the inverse sine, however different sufficient to warrant illustrating the details. We'll begin with the definition of the inverse tangent.

                                        y = tan -1 x  ⇒ tan y = x

Then the denominator is,

                                         sec2 (tan -1 x ) = sec2  y

Now, if we begin with the fact that

                                         cos2  y + sin 2  y = 1

and divide every term by cos2 y we will get,

                                          1 + tan 2  y = sec2  y

Then the denominator is,

 sec2 (tan -1 x ) = sec2  y = 1 + tan 2  y

At last by using the second portion of the definition of the inverse tangent function specified us,

                                       sec2 ( tan -1 x ) = 1 + tan 2  y = 1 + x2

Then the derivative of the inverse tangent is,

                                d (tan -1 x ) / dx =1 /1 + x2

There are three more inverse trig functions however the three illustrated here the most common ones. Formulas for remaining three could be derived through a similar procedure as we did those above.

Following are the derivatives of all six inverse trig functions.

1061_inverse tangent2.png


Related Discussions:- Inverse tangent

Impact did this have on spanish approach their subjugation, Compare and con...

Compare and contrast the Conquest of Mexico and the Conquest of Peru in the 16 th century. How did the structures of the indigenous empires in these two regions differ? What impact

Calculate the probability, Data collected from the STATS 10x class survey o...

Data collected from the STATS 10x class survey one semester included responses to questions on the number of different sexual partners and on the number of pairs of shoes the stude

Determine the property of partial ordered relation, Determine the property ...

Determine the property of Partial ordered relation Question: Partial ordered relation is transitive, reflexive and  Answer: antisymmetric

Help me help me!, A 65 ohm resistor is connected to a power supply , a curr...

A 65 ohm resistor is connected to a power supply , a current of 2.4 amperes is drawn. what is the output voltage?

Fracrions, how do u do fractions on a nummber line

how do u do fractions on a nummber line

Parabola, If the point (a,2a) is an interior point of the region bounded by...

If the point (a,2a) is an interior point of the region bounded by the parabola y2=16x and the double ordinate through the focus then a belongs to

Find out indegree, Question: Consider a digraph D on 5 nodes, named x0...

Question: Consider a digraph D on 5 nodes, named x0, x1,.., x4, such that its adjacency matrix contains 1's in all the elements above the diagonal A[0,0], A[1,1], A[2,2],.., e

How to make equations of conics easier to read, How to Make Equations of Co...

How to Make Equations of Conics Easier to Read ? If you want to graph a conic sections, first you need to make the equation easy to read. For example, say you have the equatio

Fractions, What fraction could you add to 4/7 to get a sum greater than 1

What fraction could you add to 4/7 to get a sum greater than 1

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd