Inverse tangent, Mathematics

Assignment Help:

Inverse Tangent : Following is the definition of the inverse tangent.

 y = tan -1 x     ⇔ tan y = x                     for            -∏/2 ≤ y ≤ ?/2

Again, we have a limitation on y, however notice that we can't allow y be either of the two endpoints in the limitation above since tangent isn't even described at those two points. In order to convince yourself that this range will cover all possible values of tangent do a quick sketch of the tangent function and we can see that in this range we do indeed cover all possible values of tangent. Also, in this case there is no limitation on x since tangent can take on all possible values.

Example   Evaluate tan -1 1

Solution : Following we are asking,

                                                              tan y =1

where y satisfies the limitation given above.  From a unit circle we can illustrated that

 y = ∏ /4.

Since there is no limitation on x we can ask for the limits of the inverse tangent function as x goes to plus or minus infinity.  In order to do this we'll require the graph of the inverse tangent function. This is illustrated below.

1329_inverse tangent.png

From this graph we can illustrates that

1944_inverse tengent1.png

The tangent & inverse tangent functions are inverse functions hence,

tan ( tan -1 x )= x                          tan -1 ( tan x ) =x

Thus to determine the derivative of the inverse tangent function we can begin with

f ( x ) = tan x                                                  g ( x ) = tan -1 x

Then we have,

g′ ( x ) =        1            /f ′ ( g ( x )) = sec2 (tan -1 x )

Simplifying the denominator is alike to the inverse sine, however different sufficient to warrant illustrating the details. We'll begin with the definition of the inverse tangent.

                                        y = tan -1 x  ⇒ tan y = x

Then the denominator is,

                                         sec2 (tan -1 x ) = sec2  y

Now, if we begin with the fact that

                                         cos2  y + sin 2  y = 1

and divide every term by cos2 y we will get,

                                          1 + tan 2  y = sec2  y

Then the denominator is,

 sec2 (tan -1 x ) = sec2  y = 1 + tan 2  y

At last by using the second portion of the definition of the inverse tangent function specified us,

                                       sec2 ( tan -1 x ) = 1 + tan 2  y = 1 + x2

Then the derivative of the inverse tangent is,

                                d (tan -1 x ) / dx =1 /1 + x2

There are three more inverse trig functions however the three illustrated here the most common ones. Formulas for remaining three could be derived through a similar procedure as we did those above.

Following are the derivatives of all six inverse trig functions.

1061_inverse tangent2.png


Related Discussions:- Inverse tangent

#title., am i going to get As

am i going to get As

Properties of radicals, If n is positive integer greater than 1 and a & b b...

If n is positive integer greater than 1 and a & b both are positive real numbers then, Consider that on occasion we can let a or b to be negative and yet have these propert

Sas, can you tell me how to find the "x" and the "y" when trying to find if...

can you tell me how to find the "x" and the "y" when trying to find if two triangles are smiliar

Heaviside or step function limit, Heaviside or step function limit : Calcu...

Heaviside or step function limit : Calculates the value of the following limit. Solution This function is frequently called either the Heaviside or step function. We

Project, report on shares and dividend using newspaper

report on shares and dividend using newspaper

Estimation of difference among two means, Estimation of difference among tw...

Estimation of difference among two means We know that the standard error of a sample is given by the value of the standard deviation (σ) divided by the square root of the numbe

Graph ( x + 1)2 /9 -( y - 2)2/4 =1 of hyperbola, Graph  ( x + 1) 2 /9 -( ...

Graph  ( x + 1) 2 /9 -( y - 2) 2 /4 =1 Solution It is a hyperbola. There are in fact two standard forms for a hyperbola.  Following are the basics for each form. H

Simple random sampling, Simple Random Sampling It refers to the samplin...

Simple Random Sampling It refers to the sampling technique whether each and every item of the population is described an equal chance of being included in the sample. Because s

Estimate the probability, The following (artificial) data record the length...

The following (artificial) data record the length of stay (in days) spent on a psychiatric ward for 28 consecutive patients who have been sectioned under the mental health act, cla

Brahmaguptas problem, How to solve Brahmaguptas Problem? Explain Brahmagupt...

How to solve Brahmaguptas Problem? Explain Brahmaguptas Problem solving method?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd