Inverse tangent, Mathematics

Assignment Help:

Inverse Tangent : Following is the definition of the inverse tangent.

 y = tan -1 x     ⇔ tan y = x                     for            -∏/2 ≤ y ≤ ?/2

Again, we have a limitation on y, however notice that we can't allow y be either of the two endpoints in the limitation above since tangent isn't even described at those two points. In order to convince yourself that this range will cover all possible values of tangent do a quick sketch of the tangent function and we can see that in this range we do indeed cover all possible values of tangent. Also, in this case there is no limitation on x since tangent can take on all possible values.

Example   Evaluate tan -1 1

Solution : Following we are asking,

                                                              tan y =1

where y satisfies the limitation given above.  From a unit circle we can illustrated that

 y = ∏ /4.

Since there is no limitation on x we can ask for the limits of the inverse tangent function as x goes to plus or minus infinity.  In order to do this we'll require the graph of the inverse tangent function. This is illustrated below.

1329_inverse tangent.png

From this graph we can illustrates that

1944_inverse tengent1.png

The tangent & inverse tangent functions are inverse functions hence,

tan ( tan -1 x )= x                          tan -1 ( tan x ) =x

Thus to determine the derivative of the inverse tangent function we can begin with

f ( x ) = tan x                                                  g ( x ) = tan -1 x

Then we have,

g′ ( x ) =        1            /f ′ ( g ( x )) = sec2 (tan -1 x )

Simplifying the denominator is alike to the inverse sine, however different sufficient to warrant illustrating the details. We'll begin with the definition of the inverse tangent.

                                        y = tan -1 x  ⇒ tan y = x

Then the denominator is,

                                         sec2 (tan -1 x ) = sec2  y

Now, if we begin with the fact that

                                         cos2  y + sin 2  y = 1

and divide every term by cos2 y we will get,

                                          1 + tan 2  y = sec2  y

Then the denominator is,

 sec2 (tan -1 x ) = sec2  y = 1 + tan 2  y

At last by using the second portion of the definition of the inverse tangent function specified us,

                                       sec2 ( tan -1 x ) = 1 + tan 2  y = 1 + x2

Then the derivative of the inverse tangent is,

                                d (tan -1 x ) / dx =1 /1 + x2

There are three more inverse trig functions however the three illustrated here the most common ones. Formulas for remaining three could be derived through a similar procedure as we did those above.

Following are the derivatives of all six inverse trig functions.

1061_inverse tangent2.png


Related Discussions:- Inverse tangent

Calculate the gross pay, 1. Simon's monthly take home pay (after taxes) is ...

1. Simon's monthly take home pay (after taxes) is $2200, if he pays 19%  of his gross pay(before taxex) in tax, what is his gross pay? 2 . Convert the following quantities to th

Statistics., the mean and standarddeviation of set a is -x ans s respective...

the mean and standarddeviation of set a is -x ans s respectively.find the mean and standard deviation of set b

Standardizing a random variable, Standardizing a Random Variable       ...

Standardizing a Random Variable       If X is a random variable with E(X) = m and V(X) = s 2 , then Y = (X – m)/ s is a random variable with mean 0 and standard deviatio

Pair of straight line, The equation ax2 + 2hxy + by2 =0 represents a pair o...

The equation ax2 + 2hxy + by2 =0 represents a pair of straight lines passing through the origin and its angle is tan q = ±2root under h2-ab/(a+b) and even the eqn ax2+2hxy+by2+2gx+

Evaluate the measure of the smallest angle, The calculation of the angles o...

The calculation of the angles of a triangle are shown by 2x + 15, x + 20 and 3x + 25. Evaluate the measure of the smallest angle within the triangle. a. 40° b. 85° c. 25°

Indices, What is a way to solve indices

What is a way to solve indices

Describe about parallel and perpendicular lines, Describe about Parallel an...

Describe about Parallel and Perpendicular Lines ? Parallel Lines : Parallel lines are coplanar lines (lines that lie in the same plane) that never intersect. The bl

Infinite series, all properties, formulas of infinite series

all properties, formulas of infinite series

Nonhomogeneous differential equations, Let's here start thinking regarding ...

Let's here start thinking regarding that how to solve nonhomogeneous differential equations.  A second order, linear non-homogeneous differential equation is as y′′ + p (t) y′ +

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd