Inverse tangent, Mathematics

Assignment Help:

Inverse Tangent : Following is the definition of the inverse tangent.

 y = tan -1 x     ⇔ tan y = x                     for            -∏/2 ≤ y ≤ ?/2

Again, we have a limitation on y, however notice that we can't allow y be either of the two endpoints in the limitation above since tangent isn't even described at those two points. In order to convince yourself that this range will cover all possible values of tangent do a quick sketch of the tangent function and we can see that in this range we do indeed cover all possible values of tangent. Also, in this case there is no limitation on x since tangent can take on all possible values.

Example   Evaluate tan -1 1

Solution : Following we are asking,

                                                              tan y =1

where y satisfies the limitation given above.  From a unit circle we can illustrated that

 y = ∏ /4.

Since there is no limitation on x we can ask for the limits of the inverse tangent function as x goes to plus or minus infinity.  In order to do this we'll require the graph of the inverse tangent function. This is illustrated below.

1329_inverse tangent.png

From this graph we can illustrates that

1944_inverse tengent1.png

The tangent & inverse tangent functions are inverse functions hence,

tan ( tan -1 x )= x                          tan -1 ( tan x ) =x

Thus to determine the derivative of the inverse tangent function we can begin with

f ( x ) = tan x                                                  g ( x ) = tan -1 x

Then we have,

g′ ( x ) =        1            /f ′ ( g ( x )) = sec2 (tan -1 x )

Simplifying the denominator is alike to the inverse sine, however different sufficient to warrant illustrating the details. We'll begin with the definition of the inverse tangent.

                                        y = tan -1 x  ⇒ tan y = x

Then the denominator is,

                                         sec2 (tan -1 x ) = sec2  y

Now, if we begin with the fact that

                                         cos2  y + sin 2  y = 1

and divide every term by cos2 y we will get,

                                          1 + tan 2  y = sec2  y

Then the denominator is,

 sec2 (tan -1 x ) = sec2  y = 1 + tan 2  y

At last by using the second portion of the definition of the inverse tangent function specified us,

                                       sec2 ( tan -1 x ) = 1 + tan 2  y = 1 + x2

Then the derivative of the inverse tangent is,

                                d (tan -1 x ) / dx =1 /1 + x2

There are three more inverse trig functions however the three illustrated here the most common ones. Formulas for remaining three could be derived through a similar procedure as we did those above.

Following are the derivatives of all six inverse trig functions.

1061_inverse tangent2.png


Related Discussions:- Inverse tangent

Examples of solve quadratic equations by factorization, Provide me some Exa...

Provide me some Examples of solve quadratic equations by Factorization

Explain what is symmetry in maths, Symmetry Definition : A line of sy...

Symmetry Definition : A line of symmetry divides a set of points into two halves, each being a reflection of the other. Each image point is also a point of the set. Defin

Example of multiplication, Example 1: Multiply 432 by 8. Solution: ...

Example 1: Multiply 432 by 8. Solution:        432 ×        8 --------------       3,456 In multiplying the multiplier in the units column to the multiplica

Derivatives, application of derivatives in engg.

application of derivatives in engg.

Divides a given line segment internally in the ratio of 1:3, Divides a give...

Divides a given line segment internally in the ratio of 1:3 Construction : i )Draw a ray AX making an acute angle with AB. ii) Mark 4 points at equal distance. on AX Let

Formula to calculate the surface area of basketball, Keith wants to know th...

Keith wants to know the surface area of a basketball. Which formula will he use? The surface area of a sphere is four times π times the radius squared.

Magnitude - vector, Magnitude - Vector The magnitude, or length, of th...

Magnitude - Vector The magnitude, or length, of the vector v → = (a1, a2, a3) is given by, ||v → || = √(a 1 2 + a 2 2 + a 2 3 ) Example of Magnitude Illus

Find out a if f(x) is continuous at x = -2 , Example   Given the graph of ...

Example   Given the graph of f(x), illustrated below, find out if f(x) is continuous at x = -2 , x = 0 , and x = 3 . Solution To give answer of the question for each

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd