Inverse tangent, Mathematics

Assignment Help:

Inverse Tangent : Following is the definition of the inverse tangent.

 y = tan -1 x     ⇔ tan y = x                     for            -∏/2 ≤ y ≤ ?/2

Again, we have a limitation on y, however notice that we can't allow y be either of the two endpoints in the limitation above since tangent isn't even described at those two points. In order to convince yourself that this range will cover all possible values of tangent do a quick sketch of the tangent function and we can see that in this range we do indeed cover all possible values of tangent. Also, in this case there is no limitation on x since tangent can take on all possible values.

Example   Evaluate tan -1 1

Solution : Following we are asking,

                                                              tan y =1

where y satisfies the limitation given above.  From a unit circle we can illustrated that

 y = ∏ /4.

Since there is no limitation on x we can ask for the limits of the inverse tangent function as x goes to plus or minus infinity.  In order to do this we'll require the graph of the inverse tangent function. This is illustrated below.

1329_inverse tangent.png

From this graph we can illustrates that

1944_inverse tengent1.png

The tangent & inverse tangent functions are inverse functions hence,

tan ( tan -1 x )= x                          tan -1 ( tan x ) =x

Thus to determine the derivative of the inverse tangent function we can begin with

f ( x ) = tan x                                                  g ( x ) = tan -1 x

Then we have,

g′ ( x ) =        1            /f ′ ( g ( x )) = sec2 (tan -1 x )

Simplifying the denominator is alike to the inverse sine, however different sufficient to warrant illustrating the details. We'll begin with the definition of the inverse tangent.

                                        y = tan -1 x  ⇒ tan y = x

Then the denominator is,

                                         sec2 (tan -1 x ) = sec2  y

Now, if we begin with the fact that

                                         cos2  y + sin 2  y = 1

and divide every term by cos2 y we will get,

                                          1 + tan 2  y = sec2  y

Then the denominator is,

 sec2 (tan -1 x ) = sec2  y = 1 + tan 2  y

At last by using the second portion of the definition of the inverse tangent function specified us,

                                       sec2 ( tan -1 x ) = 1 + tan 2  y = 1 + x2

Then the derivative of the inverse tangent is,

                                d (tan -1 x ) / dx =1 /1 + x2

There are three more inverse trig functions however the three illustrated here the most common ones. Formulas for remaining three could be derived through a similar procedure as we did those above.

Following are the derivatives of all six inverse trig functions.

1061_inverse tangent2.png


Related Discussions:- Inverse tangent

Robin''s nest nursing home had a fundraising target, The Robin's Nest Nursi...

The Robin's Nest Nursing Home had a fundraising target of $9,500. By the end of the fundraiser, they had exceeded their goal through $2,100. How much did they raise? Exceeded

#calculus, Ask question #divergent gradient u vector#

Ask question #divergent gradient u vector#

Define euler circuit and euler path, Define Euler Circuit and Euler Path.  ...

Define Euler Circuit and Euler Path.  Which of the following graphs have an Euler circuit and Euler path.

Regression coefficient, 4x+3y+7=0 and 3x+4y+8=0 find the regression coeffic...

4x+3y+7=0 and 3x+4y+8=0 find the regression coefficient between bxy and byx.

Algebra, sir/madam, i abdulla working as a maths teacher want to join ur es...

sir/madam, i abdulla working as a maths teacher want to join ur esteemed organisation as a tutor how can i proceed i have created an account even pls guide me, thanks abdulla

Without a calculator give the exact value, without a calculator give the ex...

without a calculator give the exact value of each of the following logarithms. (a) (b) log1000 (c) log 16 16 (d) log 23 1  (e)  Solution (b) log10

Probability, Probability -Probability is an extremely popular concept ...

Probability -Probability is an extremely popular concept in business management. Since it covers the risks such may be included in certain business situations. This is a fact

Explain introduction to non-euclidean geometry, Explain Introduction to Non...

Explain Introduction to Non-Euclidean Geometry? Up to this point, the type of geometry we have been studying is known as Euclidean geometry. It is based on the studies of the a

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd