Inverse tangent, Mathematics

Assignment Help:

Inverse Tangent : Following is the definition of the inverse tangent.

 y = tan -1 x     ⇔ tan y = x                     for            -∏/2 ≤ y ≤ ?/2

Again, we have a limitation on y, however notice that we can't allow y be either of the two endpoints in the limitation above since tangent isn't even described at those two points. In order to convince yourself that this range will cover all possible values of tangent do a quick sketch of the tangent function and we can see that in this range we do indeed cover all possible values of tangent. Also, in this case there is no limitation on x since tangent can take on all possible values.

Example   Evaluate tan -1 1

Solution : Following we are asking,

                                                              tan y =1

where y satisfies the limitation given above.  From a unit circle we can illustrated that

 y = ∏ /4.

Since there is no limitation on x we can ask for the limits of the inverse tangent function as x goes to plus or minus infinity.  In order to do this we'll require the graph of the inverse tangent function. This is illustrated below.

1329_inverse tangent.png

From this graph we can illustrates that

1944_inverse tengent1.png

The tangent & inverse tangent functions are inverse functions hence,

tan ( tan -1 x )= x                          tan -1 ( tan x ) =x

Thus to determine the derivative of the inverse tangent function we can begin with

f ( x ) = tan x                                                  g ( x ) = tan -1 x

Then we have,

g′ ( x ) =        1            /f ′ ( g ( x )) = sec2 (tan -1 x )

Simplifying the denominator is alike to the inverse sine, however different sufficient to warrant illustrating the details. We'll begin with the definition of the inverse tangent.

                                        y = tan -1 x  ⇒ tan y = x

Then the denominator is,

                                         sec2 (tan -1 x ) = sec2  y

Now, if we begin with the fact that

                                         cos2  y + sin 2  y = 1

and divide every term by cos2 y we will get,

                                          1 + tan 2  y = sec2  y

Then the denominator is,

 sec2 (tan -1 x ) = sec2  y = 1 + tan 2  y

At last by using the second portion of the definition of the inverse tangent function specified us,

                                       sec2 ( tan -1 x ) = 1 + tan 2  y = 1 + x2

Then the derivative of the inverse tangent is,

                                d (tan -1 x ) / dx =1 /1 + x2

There are three more inverse trig functions however the three illustrated here the most common ones. Formulas for remaining three could be derived through a similar procedure as we did those above.

Following are the derivatives of all six inverse trig functions.

1061_inverse tangent2.png


Related Discussions:- Inverse tangent

Evaluate subsequent proportion, Evaluate subsequent proportion: Examp...

Evaluate subsequent proportion: Example 2: If 5 pounds of apples cost 80 cents, how much will 7 pounds cost? Solution: By using x for the cost of 7 pounds of appl

Determination of the regression equation, Determination of the Regression E...

Determination of the Regression Equation The determination of the regression equation such given above is generally done by using a technique termed as "the method of least sq

Arc length with vector functions - three dimensional space, Arc Length with...

Arc Length with Vector Functions In this part we will recast an old formula into terms of vector functions.  We wish to find out the length of a vector function, r → (t) =

Determine the size of belt, On a piece of machinery, the centers of two pul...

On a piece of machinery, the centers of two pulleys are 3 feet apart, and the radius of each pulley is 6 inches. Determine the size of belt (in feet) is required to wrap around bot

Complex fractions, A small airplane used 5and2over3 gallons of fuel to fly ...

A small airplane used 5and2over3 gallons of fuel to fly a 2 hour trip.how many gallons were used each hour

Find the coordinates of the point p, Find the coordinates of the point P wh...

Find the coordinates of the point P which is three -fourth of the way from A (3, 1) to B (-2, 5).

Geometric mean, When three quantities a, b and c are in G.P., t...

When three quantities a, b and c are in G.P., then the geometric mean "b" is calculated as follows. Since these quantities are in G.P., the r

Calculas, Q1: Find three positive numbers whose sum is 54 and whose product...

Q1: Find three positive numbers whose sum is 54 and whose product is as large as possible.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd