Inverse tangent, Mathematics

Assignment Help:

Inverse Tangent : Following is the definition of the inverse tangent.

 y = tan -1 x     ⇔ tan y = x                     for            -∏/2 ≤ y ≤ ?/2

Again, we have a limitation on y, however notice that we can't allow y be either of the two endpoints in the limitation above since tangent isn't even described at those two points. In order to convince yourself that this range will cover all possible values of tangent do a quick sketch of the tangent function and we can see that in this range we do indeed cover all possible values of tangent. Also, in this case there is no limitation on x since tangent can take on all possible values.

Example   Evaluate tan -1 1

Solution : Following we are asking,

                                                              tan y =1

where y satisfies the limitation given above.  From a unit circle we can illustrated that

 y = ∏ /4.

Since there is no limitation on x we can ask for the limits of the inverse tangent function as x goes to plus or minus infinity.  In order to do this we'll require the graph of the inverse tangent function. This is illustrated below.

1329_inverse tangent.png

From this graph we can illustrates that

1944_inverse tengent1.png

The tangent & inverse tangent functions are inverse functions hence,

tan ( tan -1 x )= x                          tan -1 ( tan x ) =x

Thus to determine the derivative of the inverse tangent function we can begin with

f ( x ) = tan x                                                  g ( x ) = tan -1 x

Then we have,

g′ ( x ) =        1            /f ′ ( g ( x )) = sec2 (tan -1 x )

Simplifying the denominator is alike to the inverse sine, however different sufficient to warrant illustrating the details. We'll begin with the definition of the inverse tangent.

                                        y = tan -1 x  ⇒ tan y = x

Then the denominator is,

                                         sec2 (tan -1 x ) = sec2  y

Now, if we begin with the fact that

                                         cos2  y + sin 2  y = 1

and divide every term by cos2 y we will get,

                                          1 + tan 2  y = sec2  y

Then the denominator is,

 sec2 (tan -1 x ) = sec2  y = 1 + tan 2  y

At last by using the second portion of the definition of the inverse tangent function specified us,

                                       sec2 ( tan -1 x ) = 1 + tan 2  y = 1 + x2

Then the derivative of the inverse tangent is,

                                d (tan -1 x ) / dx =1 /1 + x2

There are three more inverse trig functions however the three illustrated here the most common ones. Formulas for remaining three could be derived through a similar procedure as we did those above.

Following are the derivatives of all six inverse trig functions.

1061_inverse tangent2.png


Related Discussions:- Inverse tangent

Binomial probability distribution, Binomial Probability Distribution B...

Binomial Probability Distribution Binomial probability distribution is a set of probabilities for discrete events. Discrete events are those whose outcomes or results can be c

Complex number, a ,b,c are complex numbers such that a/1-b=b/1-c=c-1-a=k.fi...

a ,b,c are complex numbers such that a/1-b=b/1-c=c-1-a=k.find the value of k

What is trigonometric ratios, What is Trigonometric Ratios ? Trigonome...

What is Trigonometric Ratios ? Trigonometry, a branch of mathematics, is based on the ratios known as sine, cosine, and tangent. Trigonometric ratios apply only to right trian

Comparison test or limit comparison test, Comparison Test or Limit Comparis...

Comparison Test or Limit Comparison Test In the preceding section we saw how to relate a series to an improper integral to find out the convergence of a series.  When the inte

Statistics and probability, STATISTICS AND PROBABILITY : Statistics  ar...

STATISTICS AND PROBABILITY : Statistics  are the  only  tools  by  which  an  opening  can  be  cut  through  the formidable  thicket  of difficulties  that bars the  path  of

Statistics, How do you calculate for the distance between two co-ordinates?...

How do you calculate for the distance between two co-ordinates?

Poisson mathematical properties, Poisson Mathematical Properties 1. Th...

Poisson Mathematical Properties 1. The expected or mean value = np = λ Whereas; n = Sample Size p = Probability of success 2. The variance = np = ? 3. Standard dev

Which number falls among 5.56 and 5.81, Which number falls among 5.56 and 5...

Which number falls among 5.56 and 5.81? If you add a zero to the end of 5.6 to get 5.60, it is simpler to see that 5.56

Build upon the childs background with maths, BUILD UPON THE CHILDS BACKGROU...

BUILD UPON THE CHILDS BACKGROUND :  As you read in previous, each child is unique. Individual children vary in age, level of cognition, background, etc. What implications does thi

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd