Inverse tangent, Mathematics

Assignment Help:

Inverse Tangent : Following is the definition of the inverse tangent.

 y = tan -1 x     ⇔ tan y = x                     for            -∏/2 ≤ y ≤ ?/2

Again, we have a limitation on y, however notice that we can't allow y be either of the two endpoints in the limitation above since tangent isn't even described at those two points. In order to convince yourself that this range will cover all possible values of tangent do a quick sketch of the tangent function and we can see that in this range we do indeed cover all possible values of tangent. Also, in this case there is no limitation on x since tangent can take on all possible values.

Example   Evaluate tan -1 1

Solution : Following we are asking,

                                                              tan y =1

where y satisfies the limitation given above.  From a unit circle we can illustrated that

 y = ∏ /4.

Since there is no limitation on x we can ask for the limits of the inverse tangent function as x goes to plus or minus infinity.  In order to do this we'll require the graph of the inverse tangent function. This is illustrated below.

1329_inverse tangent.png

From this graph we can illustrates that

1944_inverse tengent1.png

The tangent & inverse tangent functions are inverse functions hence,

tan ( tan -1 x )= x                          tan -1 ( tan x ) =x

Thus to determine the derivative of the inverse tangent function we can begin with

f ( x ) = tan x                                                  g ( x ) = tan -1 x

Then we have,

g′ ( x ) =        1            /f ′ ( g ( x )) = sec2 (tan -1 x )

Simplifying the denominator is alike to the inverse sine, however different sufficient to warrant illustrating the details. We'll begin with the definition of the inverse tangent.

                                        y = tan -1 x  ⇒ tan y = x

Then the denominator is,

                                         sec2 (tan -1 x ) = sec2  y

Now, if we begin with the fact that

                                         cos2  y + sin 2  y = 1

and divide every term by cos2 y we will get,

                                          1 + tan 2  y = sec2  y

Then the denominator is,

 sec2 (tan -1 x ) = sec2  y = 1 + tan 2  y

At last by using the second portion of the definition of the inverse tangent function specified us,

                                       sec2 ( tan -1 x ) = 1 + tan 2  y = 1 + x2

Then the derivative of the inverse tangent is,

                                d (tan -1 x ) / dx =1 /1 + x2

There are three more inverse trig functions however the three illustrated here the most common ones. Formulas for remaining three could be derived through a similar procedure as we did those above.

Following are the derivatives of all six inverse trig functions.

1061_inverse tangent2.png


Related Discussions:- Inverse tangent

Find k to three decimal places, The population of a city is observed as gro...

The population of a city is observed as growing exponentially according to the function P(t) = P0 e kt , where the population doubled in the first 50 years. (a) Find k to three

SYSTEMS OF ODE, Problem 1 Let ~x0 = A~x and y 0 = B~y be two 2  2 linear s...

Problem 1 Let ~x0 = A~x and y 0 = B~y be two 2  2 linear systems of ODE. (1) Suppose that A and B have the same purely imaginary eigenvalues. Prove that these systems are topologi

Find the value of x of eagle , A fox and an eagle lived at the top of a cli...

A fox and an eagle lived at the top of a cliff of height 6m, whose base was at a distance of 10m from a point A on the ground. The fox descends the cliff and went straight to the p

The parallelogram, love is a parallelogram where prove that love is a rect...

love is a parallelogram where prove that love is a rectangle

Shares and dividend, A man buys rs50 shares of a company paying 12% of divi...

A man buys rs50 shares of a company paying 12% of dividendat premium ofof rs10 find market value of 320 shares and profit%

Contravariant vector, Ask question #suppose that components of a contravari...

Ask question #suppose that components of a contravariant vector A^i (for n=3)in the coordinate system (x^1,x^2,...,x^n) are A=x,A=y,A=z.Find the components A^p of the vector in the

MUTIPLYING FRACTIONS, EVERY TIME I TRY TO DO ANY KIND OF FRACTIONS WELL MUL...

EVERY TIME I TRY TO DO ANY KIND OF FRACTIONS WELL MULTIPLYING I ALWAYS GET IT WRONG

What was the planes average speed, A ?ight from Pittsburgh to Los Angeles t...

A ?ight from Pittsburgh to Los Angeles took 5 hours and covered 3,060 miles. What was the plane's average speed? Find out the rate at that Susan is traveling through dividing h

Integers, what are 20 integer equations that have multiplication, division,...

what are 20 integer equations that have multiplication, division, subtraction,and additon??

Triple integrals, Consider a circular disc of radius 1 and thickness 1 whic...

Consider a circular disc of radius 1 and thickness 1 which has a uniform density 10 ?(x, y, z) = 1. (a) Find the moment of inertia of this disc about its central axis (that is, the

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd