Inverse tangent, Mathematics

Assignment Help:

Inverse Tangent : Following is the definition of the inverse tangent.

 y = tan -1 x     ⇔ tan y = x                     for            -∏/2 ≤ y ≤ ?/2

Again, we have a limitation on y, however notice that we can't allow y be either of the two endpoints in the limitation above since tangent isn't even described at those two points. In order to convince yourself that this range will cover all possible values of tangent do a quick sketch of the tangent function and we can see that in this range we do indeed cover all possible values of tangent. Also, in this case there is no limitation on x since tangent can take on all possible values.

Example   Evaluate tan -1 1

Solution : Following we are asking,

                                                              tan y =1

where y satisfies the limitation given above.  From a unit circle we can illustrated that

 y = ∏ /4.

Since there is no limitation on x we can ask for the limits of the inverse tangent function as x goes to plus or minus infinity.  In order to do this we'll require the graph of the inverse tangent function. This is illustrated below.

1329_inverse tangent.png

From this graph we can illustrates that

1944_inverse tengent1.png

The tangent & inverse tangent functions are inverse functions hence,

tan ( tan -1 x )= x                          tan -1 ( tan x ) =x

Thus to determine the derivative of the inverse tangent function we can begin with

f ( x ) = tan x                                                  g ( x ) = tan -1 x

Then we have,

g′ ( x ) =        1            /f ′ ( g ( x )) = sec2 (tan -1 x )

Simplifying the denominator is alike to the inverse sine, however different sufficient to warrant illustrating the details. We'll begin with the definition of the inverse tangent.

                                        y = tan -1 x  ⇒ tan y = x

Then the denominator is,

                                         sec2 (tan -1 x ) = sec2  y

Now, if we begin with the fact that

                                         cos2  y + sin 2  y = 1

and divide every term by cos2 y we will get,

                                          1 + tan 2  y = sec2  y

Then the denominator is,

 sec2 (tan -1 x ) = sec2  y = 1 + tan 2  y

At last by using the second portion of the definition of the inverse tangent function specified us,

                                       sec2 ( tan -1 x ) = 1 + tan 2  y = 1 + x2

Then the derivative of the inverse tangent is,

                                d (tan -1 x ) / dx =1 /1 + x2

There are three more inverse trig functions however the three illustrated here the most common ones. Formulas for remaining three could be derived through a similar procedure as we did those above.

Following are the derivatives of all six inverse trig functions.

1061_inverse tangent2.png


Related Discussions:- Inverse tangent

Algorithm for division, Also, their inability to apply the algorithm for di...

Also, their inability to apply the algorithm for division becomes quite evident. The reason for these difficulties may be many. We have listed some of them below. 1) There are n

Evaluate limit in indeterminate form, Evaluate following limits. S...

Evaluate following limits. Solution In this case we also contain a 0/0 indeterminate form and if we were actually good at factoring we could factor the numerator & den

Pre kg, my daughter in kg now how can i train her to develop skills in unde...

my daughter in kg now how can i train her to develop skills in undertanding the basics of all subjects how can i start teaching other than schol

Example of least common denominator, Example of Least Common Denominator: ...

Example of Least Common Denominator: Example: Add 1/7 +2 /3 + 11/12 + 4/6 Solution: Step 1:             Find out primes of each denominator. 7 = 7 (already is

Repetition need not be boring-ways to aid learning maths, Repetition Need N...

Repetition Need Not Be Boring :  From an early age on, children engage in and learn from repetitive behaviour, such as dropping and picking up things, opening and closing boxes an

Objectives of why learn mathematics, Objectives After studying this uni...

Objectives After studying this unit, you should be able to explain how mathematics is useful in our daily lives; explain the way mathematical concepts grow; iden

Linear algebra, i have question like proof, can you please help me on it?

i have question like proof, can you please help me on it?

Example of vector, Provide the vector for each of the following. (a) The...

Provide the vector for each of the following. (a) The vector from (2, -7, 0) -  (1, - 3, - 5 ) (b) The vector from (1,-3,-5) - (2, - 7, 0) (c) The position vector for ( -

Demerits and merit-the mode, The mode Merits i.  This can be dete...

The mode Merits i.  This can be determined from incomplete data given the observations along with the highest frequency are already known ii.  The mode has some applic

String art, finding distance using circumference

finding distance using circumference

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd