Inverse tangent, Mathematics

Assignment Help:

Inverse Tangent : Following is the definition of the inverse tangent.

 y = tan -1 x     ⇔ tan y = x                     for            -∏/2 ≤ y ≤ ?/2

Again, we have a limitation on y, however notice that we can't allow y be either of the two endpoints in the limitation above since tangent isn't even described at those two points. In order to convince yourself that this range will cover all possible values of tangent do a quick sketch of the tangent function and we can see that in this range we do indeed cover all possible values of tangent. Also, in this case there is no limitation on x since tangent can take on all possible values.

Example   Evaluate tan -1 1

Solution : Following we are asking,

                                                              tan y =1

where y satisfies the limitation given above.  From a unit circle we can illustrated that

 y = ∏ /4.

Since there is no limitation on x we can ask for the limits of the inverse tangent function as x goes to plus or minus infinity.  In order to do this we'll require the graph of the inverse tangent function. This is illustrated below.

1329_inverse tangent.png

From this graph we can illustrates that

1944_inverse tengent1.png

The tangent & inverse tangent functions are inverse functions hence,

tan ( tan -1 x )= x                          tan -1 ( tan x ) =x

Thus to determine the derivative of the inverse tangent function we can begin with

f ( x ) = tan x                                                  g ( x ) = tan -1 x

Then we have,

g′ ( x ) =        1            /f ′ ( g ( x )) = sec2 (tan -1 x )

Simplifying the denominator is alike to the inverse sine, however different sufficient to warrant illustrating the details. We'll begin with the definition of the inverse tangent.

                                        y = tan -1 x  ⇒ tan y = x

Then the denominator is,

                                         sec2 (tan -1 x ) = sec2  y

Now, if we begin with the fact that

                                         cos2  y + sin 2  y = 1

and divide every term by cos2 y we will get,

                                          1 + tan 2  y = sec2  y

Then the denominator is,

 sec2 (tan -1 x ) = sec2  y = 1 + tan 2  y

At last by using the second portion of the definition of the inverse tangent function specified us,

                                       sec2 ( tan -1 x ) = 1 + tan 2  y = 1 + x2

Then the derivative of the inverse tangent is,

                                d (tan -1 x ) / dx =1 /1 + x2

There are three more inverse trig functions however the three illustrated here the most common ones. Formulas for remaining three could be derived through a similar procedure as we did those above.

Following are the derivatives of all six inverse trig functions.

1061_inverse tangent2.png


Related Discussions:- Inverse tangent

Quantitative Techniques, The following table given the these scores and sal...

The following table given the these scores and sales be nine salesman during last one year in a certain firm: text scores sales (in 000''rupees) 14 31 19

Trivial solution of equation, Specified a system of equations, (1), we will...

Specified a system of equations, (1), we will have one of the three probabilities for the number of solutions. 1.   No solution. 2.   Accurately one solution. 3.   Infinit

Integers, hi i would like to ask you what is the answer for [-9]=[=5] grade...

hi i would like to ask you what is the answer for [-9]=[=5] grade 7

Limit, limit x APProaches infinity (1+1/x)x=e

limit x APProaches infinity (1+1/x)x=e

3D Trigometry problems, I have difficuties in working out those 3D trigomen...

I have difficuties in working out those 3D trigomentry problems within teh shortest possible time. Are there any tricks to get through such problems as soon as possible?

The sum of two integers is 36 what is the smaller number, The sum of two in...

The sum of two integers is 36, and the difference is 6. What is the smaller of the two numbers? Let x = the ?rst integer and let y = the second integer. The equation for the su

Marketing research, In pharmaceutical product research doctors visit the pl...

In pharmaceutical product research doctors visit the place to learn what

Developing estimation skills in maths, DEVELOPING ESTIMATION SKILLS :  A s...

DEVELOPING ESTIMATION SKILLS :  A study was done with some Class 3 and Class 4 children of five village schools to gauge how well they had understood the standard algorithms. The

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd