Inverse tangent, Mathematics

Assignment Help:

Inverse Tangent : Following is the definition of the inverse tangent.

 y = tan -1 x     ⇔ tan y = x                     for            -∏/2 ≤ y ≤ ?/2

Again, we have a limitation on y, however notice that we can't allow y be either of the two endpoints in the limitation above since tangent isn't even described at those two points. In order to convince yourself that this range will cover all possible values of tangent do a quick sketch of the tangent function and we can see that in this range we do indeed cover all possible values of tangent. Also, in this case there is no limitation on x since tangent can take on all possible values.

Example   Evaluate tan -1 1

Solution : Following we are asking,

                                                              tan y =1

where y satisfies the limitation given above.  From a unit circle we can illustrated that

 y = ∏ /4.

Since there is no limitation on x we can ask for the limits of the inverse tangent function as x goes to plus or minus infinity.  In order to do this we'll require the graph of the inverse tangent function. This is illustrated below.

1329_inverse tangent.png

From this graph we can illustrates that

1944_inverse tengent1.png

The tangent & inverse tangent functions are inverse functions hence,

tan ( tan -1 x )= x                          tan -1 ( tan x ) =x

Thus to determine the derivative of the inverse tangent function we can begin with

f ( x ) = tan x                                                  g ( x ) = tan -1 x

Then we have,

g′ ( x ) =        1            /f ′ ( g ( x )) = sec2 (tan -1 x )

Simplifying the denominator is alike to the inverse sine, however different sufficient to warrant illustrating the details. We'll begin with the definition of the inverse tangent.

                                        y = tan -1 x  ⇒ tan y = x

Then the denominator is,

                                         sec2 (tan -1 x ) = sec2  y

Now, if we begin with the fact that

                                         cos2  y + sin 2  y = 1

and divide every term by cos2 y we will get,

                                          1 + tan 2  y = sec2  y

Then the denominator is,

 sec2 (tan -1 x ) = sec2  y = 1 + tan 2  y

At last by using the second portion of the definition of the inverse tangent function specified us,

                                       sec2 ( tan -1 x ) = 1 + tan 2  y = 1 + x2

Then the derivative of the inverse tangent is,

                                d (tan -1 x ) / dx =1 /1 + x2

There are three more inverse trig functions however the three illustrated here the most common ones. Formulas for remaining three could be derived through a similar procedure as we did those above.

Following are the derivatives of all six inverse trig functions.

1061_inverse tangent2.png


Related Discussions:- Inverse tangent

How do you traverse a binary tree, How do you traverse a Binary Tree?  Desc...

How do you traverse a Binary Tree?  Describe Preorder, Inorder and Postorder traversals with example.     Ans: Traversal of tree means tree searching for a aim. The aim may be

Numerical analysis, Please,I Want to know and study for stability on predi...

Please,I Want to know and study for stability on predictor -corrector for numerical integration method

Algebra, how to solve algebra

how to solve algebra

Compute the center of mass of the solid, 1) Compute the center of mass of t...

1) Compute the center of mass of the solid of unit density 1 bounded (in spherical coordinates) by p=1 and by φ is greater than or equal 0 and less than or equal pi/4

Quadratic equations, Q UADRATIC EQUATIONS: For  the  things  of this  wor...

Q UADRATIC EQUATIONS: For  the  things  of this  world  cannot  be  made  known without  a  knowledge of mathematics. Solve by factorization a.    4x 2 - 4a 2 x +

How much does kristen have left after the money is taken out, Kristen earns...

Kristen earns $550 each week after taxes. She deposits 10% of her income in a savings account and 7% in a retirement fund. How much does Kristen have left after the money is taken

Linear equation, develop any two linear equation which are reducible into l...

develop any two linear equation which are reducible into linear form from our daily life by cross multiplication

Student, #question. statistics

#question. statistics

What are factors, What are Factors? When you multiply several numbers t...

What are Factors? When you multiply several numbers together, (4 x 5 x 3), the numbers (4, 5, and 3) being multiplied are called factors. The result of the multiplying th

Example of business applications, An apartment complex contains 250 apartme...

An apartment complex contains 250 apartments to rent.  If they rent x apartments then their monthly profit is specified by, in dollars,,                                      P ( x

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd