Inverse tangent, Mathematics

Assignment Help:

Inverse Tangent : Following is the definition of the inverse tangent.

 y = tan -1 x     ⇔ tan y = x                     for            -∏/2 ≤ y ≤ ?/2

Again, we have a limitation on y, however notice that we can't allow y be either of the two endpoints in the limitation above since tangent isn't even described at those two points. In order to convince yourself that this range will cover all possible values of tangent do a quick sketch of the tangent function and we can see that in this range we do indeed cover all possible values of tangent. Also, in this case there is no limitation on x since tangent can take on all possible values.

Example   Evaluate tan -1 1

Solution : Following we are asking,

                                                              tan y =1

where y satisfies the limitation given above.  From a unit circle we can illustrated that

 y = ∏ /4.

Since there is no limitation on x we can ask for the limits of the inverse tangent function as x goes to plus or minus infinity.  In order to do this we'll require the graph of the inverse tangent function. This is illustrated below.

1329_inverse tangent.png

From this graph we can illustrates that

1944_inverse tengent1.png

The tangent & inverse tangent functions are inverse functions hence,

tan ( tan -1 x )= x                          tan -1 ( tan x ) =x

Thus to determine the derivative of the inverse tangent function we can begin with

f ( x ) = tan x                                                  g ( x ) = tan -1 x

Then we have,

g′ ( x ) =        1            /f ′ ( g ( x )) = sec2 (tan -1 x )

Simplifying the denominator is alike to the inverse sine, however different sufficient to warrant illustrating the details. We'll begin with the definition of the inverse tangent.

                                        y = tan -1 x  ⇒ tan y = x

Then the denominator is,

                                         sec2 (tan -1 x ) = sec2  y

Now, if we begin with the fact that

                                         cos2  y + sin 2  y = 1

and divide every term by cos2 y we will get,

                                          1 + tan 2  y = sec2  y

Then the denominator is,

 sec2 (tan -1 x ) = sec2  y = 1 + tan 2  y

At last by using the second portion of the definition of the inverse tangent function specified us,

                                       sec2 ( tan -1 x ) = 1 + tan 2  y = 1 + x2

Then the derivative of the inverse tangent is,

                                d (tan -1 x ) / dx =1 /1 + x2

There are three more inverse trig functions however the three illustrated here the most common ones. Formulas for remaining three could be derived through a similar procedure as we did those above.

Following are the derivatives of all six inverse trig functions.

1061_inverse tangent2.png


Related Discussions:- Inverse tangent

g ( x ) = 3sec ( x ) -10 cot ( x ) -differentiate , Differentiate followin...

Differentiate following functions.                   g ( x ) = 3sec ( x ) -10 cot ( x ) Solution : There actually isn't a whole lot to this problem.  We'll just differentia

Subtangents & subnormals, show that the subtangent at any point on parabola...

show that the subtangent at any point on parabola y2 =4ax is twice the abscissa at that point.

Payoff Matrix, A farmer grows apples on her 400-acre farm and must cope wit...

A farmer grows apples on her 400-acre farm and must cope with occasional infestations of worms. If she refrains from using pesticides, she can get a premium for "organically grown"

Define tautology and contradiction, Define tautology and contradiction.  ...

Define tautology and contradiction.  Ans: If a compound proposition comprises two atomic propositions as components, after that the truth table for the compound proposition con

Probability, julie has 3 hats and 5 scarves. How many ways can she wear a h...

julie has 3 hats and 5 scarves. How many ways can she wear a hat and a scarf?

Find the volume of the cuboids, If the areas of three adjacent faces of cub...

If the areas of three adjacent faces of cuboid are x, y, z respectively, Find the volume of the cuboids. Ans: lb = x , bh = y, hl = z Volume of cuboid = lbh V 2 = l 2 b 2

Exponets, what does the three mean in the power ?

what does the three mean in the power ?

Applications of integrals, Applications of Integrals In this part we're...

Applications of Integrals In this part we're going to come across at some of the applications of integration.  It should be noted also that these kinds of applications are illu

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd