Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Inverse Sine : Let's begin with inverse sine. Following is the definition of the inverse sine.
y = sin -1 x ⇔ sin y = x for - ?/2 ≤ y ≤ ?/2
Hence evaluating an inverse trig function is the same as asking what angle (i.e. y) did we plug in the sine function to obtain x. The limitation on y given above is there to ensure that we obtain consistent solution out of the inverse sine. We know that there are actually an infinite number of angles which will work and we desire a consistent value while we work with inverse sine. By using the range of angles above specified all possible values of the sine function accurately once. If you're not certain of that sketch out a unit circle and you'll see that that ranges of angles (the y's) will cover up all possible values of sine.
Note that since -1 ≤ sin ( y ) ≤ 1 we also have -1 ≤ x ≤ 1 .
Let's work on some quick example.
Example: Evaluate sin -1 ( 1/2 )
Solution : Thus we are actually asking what angle y solves out the following equation.
sin ( y ) =1 /2
and we are limited to the values of y above.
From a unit circle we can rapidly see that y = ∏/6 .
Find out the domain of each of the following. (a) f (x,y) = √ (x+y) (b) f (x,y) = √x+√y (c) f (x,y) = ln (9 - x 2 - 9y 2 ) Solution (a) In this example we know
A firm buys a product using the price schedule given in the table: The company estimate holding costs at 10% of the purchase price per year and ordering costs at $40 per order .
hi,i want know about Assignment work..
8
prove That J[i] is an euclidean ring
The two sides of a triangle are 17 cm and 28 cm long, and the length of the median drawn to the third side is equal to 19.5 cm. Find the distance from an endpoint of this median to
Solving Trig Equations : Here we will discuss on solving trig equations. It is something which you will be asked to do on a fairly regular basis in my class. Let's just see the
sin(x)+cos(x)
The next topic that we desire to discuss here is powers of i. Let's just take a look at what occurring while we start looking at many powers of i . i 1 = i
A plane is illustrated by any three points that are in the plane. If a plane consists of the points P = (1, 0,0) , Q = (1,1,1) and R = (2, -1, 3) find out a vector that is orthogo
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +1-415-670-9521
Phone: +1-415-670-9521
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd