Inverse functions, Mathematics

Assignment Help:

Inverse Functions : In the last instance from the previous section we looked at the two functions

  f ( x ) = 3x - 2 and g ( x ) = x /3+ 2/3 and saw that

( f o g ) ( x ) = ( g o f ) ( x ) = x

and as noted in that section it means that there is a nice relationship among these two functions.  Let's see what that relationship is.  Assume the following evaluations.

f ( -1) = 3( -1) - 2 = -5

⇒         g ( -5) = -5 /3+ 2/3 = -3/3 = -1

g ( 2) = 2/3 + 2/3 =4/3

⇒         f ( 4 /3) = 3( 4/3 ) - 2 = 4 - 2 = 2

In the first case we plugged x = -1 in f (x) and got a value of -5.  Then we turned around and plugged x = -5 into g (x) and got a value of -1, the number which we started off with.

In the second case we did something same.  Here we plugged x = 2 into g ( x ) and got a value of 4/3, we turned around & plugged this into f ( x ) and got a value of 2, that is again the number that we begun with.

Note that we actually are doing some function composition here. The first case is,

 ( g o f ) ( -1) = g [f ( -1)]= g (-5) =-1

and the second case is,

 ( f o g ) ( 2) = f [g ( 2)] =f(4/3)=2

Note that these both agree with the formula for the compositions which we found in the previous section.  We get back of function evaluation the number which we originally plugged into the composition.

Thus, just what is going on here?  In some of the way we can think of these two functions as undoing what the other did with number.  In the primary case we plugged x = -1 into f ( x ) and then plugged the result from this function evaluation back into g (x ) and in some way g (x ) undid what f ( x ) had done to x = -1 and gave us back the original x which we started with.

Function pairs which exhibit this behavior are called inverse functions. Previous to formally defining inverse functions & the notation which we're going to use for them we have to get a definition out of the way.


Related Discussions:- Inverse functions

determine that the relation is symmetric and transitive, 1. Let R and S be...

1. Let R and S be relations on a set A. For each statement, conclude whether it is true or false. In each case, provide a proof or a counterexample, whichever applies. (a) If R

Sketch the graph of the derivative of this function f '( x), Below is the s...

Below is the sketch of a function f ( x ) . Sketch the graph of the derivative of this function f ′ ( x ) . Solution : At first glance it seems to an all however impossib

Draw tangent graph y = sec ( x ), G raph y = sec ( x ) Solution: As wi...

G raph y = sec ( x ) Solution: As with tangent we will have to avoid x's for which cosine is zero (recall that sec x =1/ cos x) Secant will not present at

Find an example of congruential unit random number generator, 1. Suppose th...

1. Suppose the arrival times of phone calls in a help centre follow a Poisson process with rate 20 per hour (so the inter-arrival times are independent exponential random variables

Solve the linear programming problem using simple method, Solve the followi...

Solve the following Linear Programming Problem using Simple method. Maximize Z= 3x 1 + 2X 2 Subject to the constraints:                  X 1 + X 2 ≤ 4

Probability transition matrices or brand switching, Define the Probability ...

Define the Probability Transition Matrices or Brand switching.

Parity to De-Skew, Consider the following proposal to deskew a skewed bitst...

Consider the following proposal to deskew a skewed bitstream from a TRNG. Consider the bitstream to be a sequence of groups ot n bits for some n > 2. Take the first n bits, and o

Evaluate integrals (1 - (1 /w) cos (w - ln w) dw, Evaluate following integr...

Evaluate following integrals.                       ( (1 - (1 /w) cos (w - ln w) dw Solution In this case we know how to integrate only a cosine therefore let's makes th

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd