Inverse functions, Mathematics

Assignment Help:

Inverse Functions : In the last instance from the previous section we looked at the two functions

  f ( x ) = 3x - 2 and g ( x ) = x /3+ 2/3 and saw that

( f o g ) ( x ) = ( g o f ) ( x ) = x

and as noted in that section it means that there is a nice relationship among these two functions.  Let's see what that relationship is.  Assume the following evaluations.

f ( -1) = 3( -1) - 2 = -5

⇒         g ( -5) = -5 /3+ 2/3 = -3/3 = -1

g ( 2) = 2/3 + 2/3 =4/3

⇒         f ( 4 /3) = 3( 4/3 ) - 2 = 4 - 2 = 2

In the first case we plugged x = -1 in f (x) and got a value of -5.  Then we turned around and plugged x = -5 into g (x) and got a value of -1, the number which we started off with.

In the second case we did something same.  Here we plugged x = 2 into g ( x ) and got a value of 4/3, we turned around & plugged this into f ( x ) and got a value of 2, that is again the number that we begun with.

Note that we actually are doing some function composition here. The first case is,

 ( g o f ) ( -1) = g [f ( -1)]= g (-5) =-1

and the second case is,

 ( f o g ) ( 2) = f [g ( 2)] =f(4/3)=2

Note that these both agree with the formula for the compositions which we found in the previous section.  We get back of function evaluation the number which we originally plugged into the composition.

Thus, just what is going on here?  In some of the way we can think of these two functions as undoing what the other did with number.  In the primary case we plugged x = -1 into f ( x ) and then plugged the result from this function evaluation back into g (x ) and in some way g (x ) undid what f ( x ) had done to x = -1 and gave us back the original x which we started with.

Function pairs which exhibit this behavior are called inverse functions. Previous to formally defining inverse functions & the notation which we're going to use for them we have to get a definition out of the way.


Related Discussions:- Inverse functions

Duality., advanteges of duality

advanteges of duality

Calculus, application of radious of curvatur

application of radious of curvatur

SURFACE AREA AND VOLUMES, Metallic spheres of radii 6 centimetre, 8 centime...

Metallic spheres of radii 6 centimetre, 8 centimetre and 10 centimetres respectively are melted to form a single solid sphere. Find the radius of the resulting sphere.

Inflation , Inflation The inflation rate for a given period can be ca...

Inflation The inflation rate for a given period can be calculated using the following formula; Inflation = (current retail price index/retail price index in the base year)

Sum of a number of terms in a.p., We know that the terms in an ...

We know that the terms in an A.P. are given by a, a + d, a + 2d, a + 3d, ........ a + (n - 2)d, a + (n -  1)d The sum of all t

Trigonometry identity, if x+y+z=pi=180 prove that sin^2x+sin^2y+sin^z-2sinx...

if x+y+z=pi=180 prove that sin^2x+sin^2y+sin^z-2sinx*siny*sinz=2

Variation, If p=10 when q=2,find p when q=5

If p=10 when q=2,find p when q=5

Convert to scientific notation, 1 . If someone is 20 years old, deposits $3...

1 . If someone is 20 years old, deposits $3000 each year into a traditional IRA for 50 years at 6% interest compounded annually, and retires at age 70, how much money will be in th

Direction fields, steps to draw direction or slope fields

steps to draw direction or slope fields

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd