Inverse functions, Mathematics

Assignment Help:

Inverse Functions : In the last instance from the previous section we looked at the two functions

  f ( x ) = 3x - 2 and g ( x ) = x /3+ 2/3 and saw that

( f o g ) ( x ) = ( g o f ) ( x ) = x

and as noted in that section it means that there is a nice relationship among these two functions.  Let's see what that relationship is.  Assume the following evaluations.

f ( -1) = 3( -1) - 2 = -5

⇒         g ( -5) = -5 /3+ 2/3 = -3/3 = -1

g ( 2) = 2/3 + 2/3 =4/3

⇒         f ( 4 /3) = 3( 4/3 ) - 2 = 4 - 2 = 2

In the first case we plugged x = -1 in f (x) and got a value of -5.  Then we turned around and plugged x = -5 into g (x) and got a value of -1, the number which we started off with.

In the second case we did something same.  Here we plugged x = 2 into g ( x ) and got a value of 4/3, we turned around & plugged this into f ( x ) and got a value of 2, that is again the number that we begun with.

Note that we actually are doing some function composition here. The first case is,

 ( g o f ) ( -1) = g [f ( -1)]= g (-5) =-1

and the second case is,

 ( f o g ) ( 2) = f [g ( 2)] =f(4/3)=2

Note that these both agree with the formula for the compositions which we found in the previous section.  We get back of function evaluation the number which we originally plugged into the composition.

Thus, just what is going on here?  In some of the way we can think of these two functions as undoing what the other did with number.  In the primary case we plugged x = -1 into f ( x ) and then plugged the result from this function evaluation back into g (x ) and in some way g (x ) undid what f ( x ) had done to x = -1 and gave us back the original x which we started with.

Function pairs which exhibit this behavior are called inverse functions. Previous to formally defining inverse functions & the notation which we're going to use for them we have to get a definition out of the way.


Related Discussions:- Inverse functions

Arithmetic progressions, ARITHMETIC PROGRESSIONS: One  of the  endlessly a...

ARITHMETIC PROGRESSIONS: One  of the  endlessly alluring  aspects  of mathematics  is  that its thorniest  paradoxes have  a  way  of blooming  into  beautiful  theories Examp

Complement of a set, Need solution For the universal set T = {1, 2, 3, 4...

Need solution For the universal set T = {1, 2, 3, 4, 5} and its subset A ={2, 3} and B ={5, } Find i) A 1 ii) (A 1 ) 1 iii) (B 1 ) 1

First order differential equations, In this section we will consider for so...

In this section we will consider for solving first order differential equations. The most common first order differential equation can be written as: dy/dt = f(y,t) As we wil

Determine that the following series is convergent or diverge, Determine or ...

Determine or find out if the following series is convergent or divergent. Solution In this example the function we'll use is, f (x) = 1 / (x ln x) This function is

Solve the extraneous solutions, Solve the Extraneous Solutions ? You're...

Solve the Extraneous Solutions ? You're worst enemy (aside from arithmetic mistakes), while you're trying to solve a rational equation, is forgetting to check for extraneous so

surfaces z + |y| = 1, Describe and sketch the surfaces z + |y| = 1 and (x ...

Describe and sketch the surfaces z + |y| = 1 and (x   2) 2 y + z 2 = 0.

Trigonmetry, On your geometry test you have two triangles: ?ABC and ?MNO. Y...

On your geometry test you have two triangles: ?ABC and ?MNO. You are told that ?A ? ? M and that ?B ? ? N. Which statement is also true?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd