Inverse functions, Mathematics

Assignment Help:

Inverse Functions : In the last instance from the previous section we looked at the two functions

  f ( x ) = 3x - 2 and g ( x ) = x /3+ 2/3 and saw that

( f o g ) ( x ) = ( g o f ) ( x ) = x

and as noted in that section it means that there is a nice relationship among these two functions.  Let's see what that relationship is.  Assume the following evaluations.

f ( -1) = 3( -1) - 2 = -5

⇒         g ( -5) = -5 /3+ 2/3 = -3/3 = -1

g ( 2) = 2/3 + 2/3 =4/3

⇒         f ( 4 /3) = 3( 4/3 ) - 2 = 4 - 2 = 2

In the first case we plugged x = -1 in f (x) and got a value of -5.  Then we turned around and plugged x = -5 into g (x) and got a value of -1, the number which we started off with.

In the second case we did something same.  Here we plugged x = 2 into g ( x ) and got a value of 4/3, we turned around & plugged this into f ( x ) and got a value of 2, that is again the number that we begun with.

Note that we actually are doing some function composition here. The first case is,

 ( g o f ) ( -1) = g [f ( -1)]= g (-5) =-1

and the second case is,

 ( f o g ) ( 2) = f [g ( 2)] =f(4/3)=2

Note that these both agree with the formula for the compositions which we found in the previous section.  We get back of function evaluation the number which we originally plugged into the composition.

Thus, just what is going on here?  In some of the way we can think of these two functions as undoing what the other did with number.  In the primary case we plugged x = -1 into f ( x ) and then plugged the result from this function evaluation back into g (x ) and in some way g (x ) undid what f ( x ) had done to x = -1 and gave us back the original x which we started with.

Function pairs which exhibit this behavior are called inverse functions. Previous to formally defining inverse functions & the notation which we're going to use for them we have to get a definition out of the way.


Related Discussions:- Inverse functions

Change of base of logarithms, Change of base: The final topic that we have...

Change of base: The final topic that we have to look at in this section is the change of base formula for logarithms. The change of base formula is,

Sphere and cone, How tall does a cone with diameter of 10 inches have to be...

How tall does a cone with diameter of 10 inches have to be to fit exactly half of a sphere with a diameter of 10 inches inside it?

Find the perimeter of the rectangle, Find the perimeter of the figure, wher...

Find the perimeter of the figure, where AED is a semi-circle and ABCD is a rectangle.    (Ans : 76cm) Ans:    Perimeter of the fig = 20 + 14 + 20 + length of the arc (AED

Real constant and difference equation, Derive for the filter from z=a and p...

Derive for the filter from z=a and poles at z=b andz=c, where a, b, c are the real constants the corresponding difference equation. For what values of parameters a, b, and c the fi

The coordinate axes, Trace the curve y 2 = (x + 2) 2 (x - 6). Clearly sta...

Trace the curve y 2 = (x + 2) 2 (x - 6). Clearly state all the properties you have used for tracing it(e.g., symmetry about the axes, symmetry about the origin, points of interse

Fundamental theorem of calculus, Fundamental Theorem of Calculus, Part II ...

Fundamental Theorem of Calculus, Part II Assume f ( x ) is a continuous function on [a,b] and also assume that F ( x ) is any anti- derivative for f ( x ) . Then,

Determine the circumference, If Gretta's bicycle has a 25-inch radius wheel...

If Gretta's bicycle has a 25-inch radius wheel, how far will she travel in two turns of the wheel? (π = 3.14) a. 491 in b. 78.5 in c. 100 in d. 157 in d. To determin

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd