Inverse functions, Mathematics

Assignment Help:

Inverse Functions : In the last instance from the previous section we looked at the two functions

  f ( x ) = 3x - 2 and g ( x ) = x /3+ 2/3 and saw that

( f o g ) ( x ) = ( g o f ) ( x ) = x

and as noted in that section it means that there is a nice relationship among these two functions.  Let's see what that relationship is.  Assume the following evaluations.

f ( -1) = 3( -1) - 2 = -5

⇒         g ( -5) = -5 /3+ 2/3 = -3/3 = -1

g ( 2) = 2/3 + 2/3 =4/3

⇒         f ( 4 /3) = 3( 4/3 ) - 2 = 4 - 2 = 2

In the first case we plugged x = -1 in f (x) and got a value of -5.  Then we turned around and plugged x = -5 into g (x) and got a value of -1, the number which we started off with.

In the second case we did something same.  Here we plugged x = 2 into g ( x ) and got a value of 4/3, we turned around & plugged this into f ( x ) and got a value of 2, that is again the number that we begun with.

Note that we actually are doing some function composition here. The first case is,

 ( g o f ) ( -1) = g [f ( -1)]= g (-5) =-1

and the second case is,

 ( f o g ) ( 2) = f [g ( 2)] =f(4/3)=2

Note that these both agree with the formula for the compositions which we found in the previous section.  We get back of function evaluation the number which we originally plugged into the composition.

Thus, just what is going on here?  In some of the way we can think of these two functions as undoing what the other did with number.  In the primary case we plugged x = -1 into f ( x ) and then plugged the result from this function evaluation back into g (x ) and in some way g (x ) undid what f ( x ) had done to x = -1 and gave us back the original x which we started with.

Function pairs which exhibit this behavior are called inverse functions. Previous to formally defining inverse functions & the notation which we're going to use for them we have to get a definition out of the way.


Related Discussions:- Inverse functions

Integration, R={(r, ?):1=r= 2cos? ,-p/3= ? =p/3

R={(r, ?):1=r= 2cos? ,-p/3= ? =p/3

If there are 75 students in the play how many are boys, 64% of the students...

64% of the students within the school play are boys. If there are 75 students in the play, how many are boys? To ?nd out 64% of 75, multiply 75 by the decimal equivalent of 64%

Give an example of divisibility, Give an example of Divisibility? If yo...

Give an example of Divisibility? If you can divide one number by another without getting a remainder, we say that the first number is divisible by the second. For instance, the

Type i and type ii errors-rejection and acceptance regions, Type I and type...

Type I and type II errors When testing hypothesis (H 0 ) and deciding to either reject or accept a null hypothesis, there are four possible happenings. a) Acceptance of a t

Product, a product can be anything including physical good,services,places,...

a product can be anything including physical good,services,places,experience,nations,organizations,properties,information.discuss the statement?

The parallelogram, love is a parallelogram where prove that is a rectangle...

love is a parallelogram where prove that is a rectangle

Find out the probability, a)  A husband and wife appear in an interview for...

a)  A husband and wife appear in an interview for two vacancies in the same post.  The probability of husband's selection is 1/7 and that of wife's selection is 1/5.  What is th

Algebraic expression, i dont understand what my teacher disccussing thats w...

i dont understand what my teacher disccussing thats why i want to learn for this lesson. i want to ask'' what is the variables?

HELP, WHAT TWO SIX DIDGIT NUMBERS CAN YOU ADD 984,357

WHAT TWO SIX DIDGIT NUMBERS CAN YOU ADD 984,357

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd