Inverse functions, Mathematics

Assignment Help:

Inverse Functions : In the last instance from the previous section we looked at the two functions

  f ( x ) = 3x - 2 and g ( x ) = x /3+ 2/3 and saw that

( f o g ) ( x ) = ( g o f ) ( x ) = x

and as noted in that section it means that there is a nice relationship among these two functions.  Let's see what that relationship is.  Assume the following evaluations.

f ( -1) = 3( -1) - 2 = -5

⇒         g ( -5) = -5 /3+ 2/3 = -3/3 = -1

g ( 2) = 2/3 + 2/3 =4/3

⇒         f ( 4 /3) = 3( 4/3 ) - 2 = 4 - 2 = 2

In the first case we plugged x = -1 in f (x) and got a value of -5.  Then we turned around and plugged x = -5 into g (x) and got a value of -1, the number which we started off with.

In the second case we did something same.  Here we plugged x = 2 into g ( x ) and got a value of 4/3, we turned around & plugged this into f ( x ) and got a value of 2, that is again the number that we begun with.

Note that we actually are doing some function composition here. The first case is,

 ( g o f ) ( -1) = g [f ( -1)]= g (-5) =-1

and the second case is,

 ( f o g ) ( 2) = f [g ( 2)] =f(4/3)=2

Note that these both agree with the formula for the compositions which we found in the previous section.  We get back of function evaluation the number which we originally plugged into the composition.

Thus, just what is going on here?  In some of the way we can think of these two functions as undoing what the other did with number.  In the primary case we plugged x = -1 into f ( x ) and then plugged the result from this function evaluation back into g (x ) and in some way g (x ) undid what f ( x ) had done to x = -1 and gave us back the original x which we started with.

Function pairs which exhibit this behavior are called inverse functions. Previous to formally defining inverse functions & the notation which we're going to use for them we have to get a definition out of the way.


Related Discussions:- Inverse functions

What is the area covered through the motion of the fan, The arm of a ceilin...

The arm of a ceiling fan measures a length of 25 in. What is the area covered through the motion of the fan blades while turned on? (π = 3.14) The ceiling fan follows a circula

Definition of higher order derivatives, Higher Order Derivatives : Le...

Higher Order Derivatives : Let's begin this section with the given function.                            f ( x ) = 5x 3 - 3x 2 + 10 x - 5 By this point we have to be a

Apply depth-first-search to find out the spanning tree, Apply depth-first-s...

Apply depth-first-search to find out the spanning tree for the subsequent graph with vertex d as the starting vertex.        Ans: Let us begin with node'd'. Mark d as vi

Describe the system with 3 variables, Describe the System with 3 Variables ...

Describe the System with 3 Variables ? This is an example of solving a system of equations using the substitution method. Warning: You will not understand this example if you

Decimals, what is 0.875 of 2282?

what is 0.875 of 2282?

Repeated eigenvalues, It is the last case that we require to take a look at...

It is the last case that we require to take a look at. During this section we are going to look at solutions to the system, x?' = A x? Here the eigenvalues are repeated eigen

Coefficient of determination, Coefficient of Determination It refers t...

Coefficient of Determination It refers to the ratio of the explained variation to the total variation and is utilized to measure the strength of the linear relationship. The s

Determine the equation of plane - three dimensional space, Determine the eq...

Determine the equation of the plane that consists of the points P = (1, -2, 0), Q = (3, 1, 4) and R = (0, -1, 2). Solution To write down the equation of plane there is a re

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd