Inverse functions, Mathematics

Assignment Help:

Inverse Functions : In the last instance from the previous section we looked at the two functions

  f ( x ) = 3x - 2 and g ( x ) = x /3+ 2/3 and saw that

( f o g ) ( x ) = ( g o f ) ( x ) = x

and as noted in that section it means that there is a nice relationship among these two functions.  Let's see what that relationship is.  Assume the following evaluations.

f ( -1) = 3( -1) - 2 = -5

⇒         g ( -5) = -5 /3+ 2/3 = -3/3 = -1

g ( 2) = 2/3 + 2/3 =4/3

⇒         f ( 4 /3) = 3( 4/3 ) - 2 = 4 - 2 = 2

In the first case we plugged x = -1 in f (x) and got a value of -5.  Then we turned around and plugged x = -5 into g (x) and got a value of -1, the number which we started off with.

In the second case we did something same.  Here we plugged x = 2 into g ( x ) and got a value of 4/3, we turned around & plugged this into f ( x ) and got a value of 2, that is again the number that we begun with.

Note that we actually are doing some function composition here. The first case is,

 ( g o f ) ( -1) = g [f ( -1)]= g (-5) =-1

and the second case is,

 ( f o g ) ( 2) = f [g ( 2)] =f(4/3)=2

Note that these both agree with the formula for the compositions which we found in the previous section.  We get back of function evaluation the number which we originally plugged into the composition.

Thus, just what is going on here?  In some of the way we can think of these two functions as undoing what the other did with number.  In the primary case we plugged x = -1 into f ( x ) and then plugged the result from this function evaluation back into g (x ) and in some way g (x ) undid what f ( x ) had done to x = -1 and gave us back the original x which we started with.

Function pairs which exhibit this behavior are called inverse functions. Previous to formally defining inverse functions & the notation which we're going to use for them we have to get a definition out of the way.


Related Discussions:- Inverse functions

Fibonacci number, 1. Suppose n ≡ 7 (mod 8). Show that n ≠ x 2 + y 2 + z 2...

1. Suppose n ≡ 7 (mod 8). Show that n ≠ x 2 + y 2 + z 2 for any x, y, z ε Z. 2. Prove ∀n ε Z, that n is divisible by 9 if and only if the sum of its digits is divisible by 9.

Find the root, (a) Convert z  = - 2 - 2 i to polar form. (b) Find ...

(a) Convert z  = - 2 - 2 i to polar form. (b) Find all the roots of the equation w 3 = - 2 - 2 i . Plot the solutions on an Argand diagram.

Find the 20th term of arithmetic progressions, Find the 20 th term from th...

Find the 20 th term from the end of the AP 3, 8, 13........253. Ans:    3, 8, 13 .............. 253 Last term = 253 a20 from end = l - (n-1)d 253 - ( 20-1) 5 253

Geography, How do you find the maxima or minima on a parabolic graph?

How do you find the maxima or minima on a parabolic graph?

Arc length and surface area revisited, Arc Length and Surface Area Revisite...

Arc Length and Surface Area Revisited We won't be working any instances in this part.  This section is here exclusively for the aim of summarizing up all the arc length and su

What it means to count-learning to count, What do we understand by "being a...

What do we understand by "being able to count"? Think about the following situation before you answer. Example 1: Three year-old Mini could recite numbers from I to 20 in the co

Functions , For the layman, a "function" indicates a relationsh...

For the layman, a "function" indicates a relationship among objects. A function provides a model to describe a system. Economists refer to deman

Partial differential equations, I need expert who can solve 10 set of PDE w...

I need expert who can solve 10 set of PDE with constant of integration.

What is deductive reasoning, What is Deductive Reasoning ? Geometry is...

What is Deductive Reasoning ? Geometry is based on a deductive structure -- a system of thought in which conclusions are justified by means of previously assumed or proved sta

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd