Inverse functions, Mathematics

Assignment Help:

Inverse Functions : In the last instance from the previous section we looked at the two functions

  f ( x ) = 3x - 2 and g ( x ) = x /3+ 2/3 and saw that

( f o g ) ( x ) = ( g o f ) ( x ) = x

and as noted in that section it means that there is a nice relationship among these two functions.  Let's see what that relationship is.  Assume the following evaluations.

f ( -1) = 3( -1) - 2 = -5

⇒         g ( -5) = -5 /3+ 2/3 = -3/3 = -1

g ( 2) = 2/3 + 2/3 =4/3

⇒         f ( 4 /3) = 3( 4/3 ) - 2 = 4 - 2 = 2

In the first case we plugged x = -1 in f (x) and got a value of -5.  Then we turned around and plugged x = -5 into g (x) and got a value of -1, the number which we started off with.

In the second case we did something same.  Here we plugged x = 2 into g ( x ) and got a value of 4/3, we turned around & plugged this into f ( x ) and got a value of 2, that is again the number that we begun with.

Note that we actually are doing some function composition here. The first case is,

 ( g o f ) ( -1) = g [f ( -1)]= g (-5) =-1

and the second case is,

 ( f o g ) ( 2) = f [g ( 2)] =f(4/3)=2

Note that these both agree with the formula for the compositions which we found in the previous section.  We get back of function evaluation the number which we originally plugged into the composition.

Thus, just what is going on here?  In some of the way we can think of these two functions as undoing what the other did with number.  In the primary case we plugged x = -1 into f ( x ) and then plugged the result from this function evaluation back into g (x ) and in some way g (x ) undid what f ( x ) had done to x = -1 and gave us back the original x which we started with.

Function pairs which exhibit this behavior are called inverse functions. Previous to formally defining inverse functions & the notation which we're going to use for them we have to get a definition out of the way.


Related Discussions:- Inverse functions

Math, what is 24566x12567=

what is 24566x12567=

Marketing mix, 1) Identify key characteristics of product or services and e...

1) Identify key characteristics of product or services and estimate their significance to the market 2) Identify and analyse level of customer service provision to determine its si

Proof of the derivative of a constant, Proof of the Derivative of a Constan...

Proof of the Derivative of a Constant : d(c)/dx = 0 It is very easy to prove by using the definition of the derivative therefore define, f(x) = c and the utilize the definiti

Subtract, Ask question Minimum 100 words accepted# 1000-101

Ask question Minimum 100 words accepted# 1000-101

Repeated eigenvalues, It is the last case that we require to take a look at...

It is the last case that we require to take a look at. During this section we are going to look at solutions to the system, x?' = A x? Here the eigenvalues are repeated eigen

How much did sally earn if she worked 48 hours, Sally gets paid x dollars p...

Sally gets paid x dollars per hour for a 40-hour work week and y dollars for every hour she works over 40 hours. How much did Sally earn if she worked 48 hours? Since she worke

Hours, jeff left hartford at 2:15 pm and arrived in boston at 4:45 pm how l...

jeff left hartford at 2:15 pm and arrived in boston at 4:45 pm how long did the drive take him?

Permission for xii class, Is there any class in expertsmind for second year...

Is there any class in expertsmind for second year english.?

Give an examples of simplifying fractions , Give an examples of Simplifying...

Give an examples of Simplifying Fractions ? When a fraction cannot be reduced any further, the fraction is in its simplest form. To reduce a fraction to its simplest form,

Objectives of learning to count, Objectives :  After studying this unit, y...

Objectives :  After studying this unit, you should be able to : 1.   explain the processes involved in counting; 2.   explain why the ability to recite number names is no in

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd