Inverse functions, Mathematics

Assignment Help:

Inverse Functions : In the last instance from the previous section we looked at the two functions

  f ( x ) = 3x - 2 and g ( x ) = x /3+ 2/3 and saw that

( f o g ) ( x ) = ( g o f ) ( x ) = x

and as noted in that section it means that there is a nice relationship among these two functions.  Let's see what that relationship is.  Assume the following evaluations.

f ( -1) = 3( -1) - 2 = -5

⇒         g ( -5) = -5 /3+ 2/3 = -3/3 = -1

g ( 2) = 2/3 + 2/3 =4/3

⇒         f ( 4 /3) = 3( 4/3 ) - 2 = 4 - 2 = 2

In the first case we plugged x = -1 in f (x) and got a value of -5.  Then we turned around and plugged x = -5 into g (x) and got a value of -1, the number which we started off with.

In the second case we did something same.  Here we plugged x = 2 into g ( x ) and got a value of 4/3, we turned around & plugged this into f ( x ) and got a value of 2, that is again the number that we begun with.

Note that we actually are doing some function composition here. The first case is,

 ( g o f ) ( -1) = g [f ( -1)]= g (-5) =-1

and the second case is,

 ( f o g ) ( 2) = f [g ( 2)] =f(4/3)=2

Note that these both agree with the formula for the compositions which we found in the previous section.  We get back of function evaluation the number which we originally plugged into the composition.

Thus, just what is going on here?  In some of the way we can think of these two functions as undoing what the other did with number.  In the primary case we plugged x = -1 into f ( x ) and then plugged the result from this function evaluation back into g (x ) and in some way g (x ) undid what f ( x ) had done to x = -1 and gave us back the original x which we started with.

Function pairs which exhibit this behavior are called inverse functions. Previous to formally defining inverse functions & the notation which we're going to use for them we have to get a definition out of the way.


Related Discussions:- Inverse functions

Two consecutive positive integers whose product is 90, What is the lesser o...

What is the lesser of two consecutive positive integers whose product is 90? Let x = the lesser integer and let x + 1 = the greater integer. Because product is a key word for m

Rejection and acceptance regions, Rejection and Acceptance regions All ...

Rejection and Acceptance regions All possible values which a test statistic may either suppose consistency along with the null hypothesis as acceptance region or lead to the re

Example of integrals involving quadratics, Evaluate the following integral....

Evaluate the following integral. ∫√(x 2 +4x+5) dx Solution: Remind from the Trig Substitution section that to do a trig substitution here we first required to complete t

Graph, Graph A graph G = (V, E) contains a (finite) set that is denote...

Graph A graph G = (V, E) contains a (finite) set that is denote by V, or by V(G) if one wishes to make clear which graph is under consideration, and a collection E, or E(G), o

What is approximation, approximate value is the precise or the accurate val...

approximate value is the precise or the accurate value which is measured  to the actual value.., approximation is how close the measured value is to the actual value , for example

Right- and left-handed limits , Right- and left-handed limits : Next, let'...

Right- and left-handed limits : Next, let's see precise definitions for the right- & left-handed limits. Definition   For the right-hand limit we say that, if for eve

Give the example of exponents, Give the example of Exponents? When a nu...

Give the example of Exponents? When a number is multiplied several times, it is easier to write it as an exponent. For example, four multiplied to itself three times, is writte

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd