Inverse functions, Mathematics

Assignment Help:

Inverse Functions : In the last instance from the previous section we looked at the two functions

  f ( x ) = 3x - 2 and g ( x ) = x /3+ 2/3 and saw that

( f o g ) ( x ) = ( g o f ) ( x ) = x

and as noted in that section it means that there is a nice relationship among these two functions.  Let's see what that relationship is.  Assume the following evaluations.

f ( -1) = 3( -1) - 2 = -5

⇒         g ( -5) = -5 /3+ 2/3 = -3/3 = -1

g ( 2) = 2/3 + 2/3 =4/3

⇒         f ( 4 /3) = 3( 4/3 ) - 2 = 4 - 2 = 2

In the first case we plugged x = -1 in f (x) and got a value of -5.  Then we turned around and plugged x = -5 into g (x) and got a value of -1, the number which we started off with.

In the second case we did something same.  Here we plugged x = 2 into g ( x ) and got a value of 4/3, we turned around & plugged this into f ( x ) and got a value of 2, that is again the number that we begun with.

Note that we actually are doing some function composition here. The first case is,

 ( g o f ) ( -1) = g [f ( -1)]= g (-5) =-1

and the second case is,

 ( f o g ) ( 2) = f [g ( 2)] =f(4/3)=2

Note that these both agree with the formula for the compositions which we found in the previous section.  We get back of function evaluation the number which we originally plugged into the composition.

Thus, just what is going on here?  In some of the way we can think of these two functions as undoing what the other did with number.  In the primary case we plugged x = -1 into f ( x ) and then plugged the result from this function evaluation back into g (x ) and in some way g (x ) undid what f ( x ) had done to x = -1 and gave us back the original x which we started with.

Function pairs which exhibit this behavior are called inverse functions. Previous to formally defining inverse functions & the notation which we're going to use for them we have to get a definition out of the way.


Related Discussions:- Inverse functions

Trigonometry, what are reason inside a circle?

what are reason inside a circle?

Geometry, Awhat is polygonesk question #Minimum 100 words accepted#

Awhat is polygonesk question #Minimum 100 words accepted#

Division, how do you turn 91 divided by730 into a compatible number

how do you turn 91 divided by730 into a compatible number

What is the average of his four quiz grades, Andy earned the subsequent gra...

Andy earned the subsequent grades on his four math quizzes: 97, 78, 84, and 86. What is the average of his four quiz grades? To ?nd out the average, you must add the items (97

Find relative extrema f ( x ) = x2 on [-2, Recognizes the absolute extrema...

Recognizes the absolute extrema & relative extrema for the given function.  f ( x ) = x 2        on                  [-2, 2] Solution Following is the graph for this fun

Proper fractions, find all the kinds of fraction and give an 10 examples.

find all the kinds of fraction and give an 10 examples.

Partial derivatives, So far we have considered differentiation of functions...

So far we have considered differentiation of functions of one independent variable. In many situations, we come across functions with more than one independent variable

Proof of various derivative facts formulas properties, PROOF OF VARIOUS DER...

PROOF OF VARIOUS DERIVATIVE FACTS/FORMULAS/PROPERTIES Under this section we are going to prove several of the different derivative facts, formulas or/and properties which we en

Determine the permutation, There are 6 contestants for the post of chairman...

There are 6 contestants for the post of chairman secretary and treasurer. These positions can be filled by any of the 6. Find the possible no. of ways whether the 3 positions may b

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd