Inverse functions, Mathematics

Assignment Help:

Inverse Functions : In the last instance from the previous section we looked at the two functions

  f ( x ) = 3x - 2 and g ( x ) = x /3+ 2/3 and saw that

( f o g ) ( x ) = ( g o f ) ( x ) = x

and as noted in that section it means that there is a nice relationship among these two functions.  Let's see what that relationship is.  Assume the following evaluations.

f ( -1) = 3( -1) - 2 = -5

⇒         g ( -5) = -5 /3+ 2/3 = -3/3 = -1

g ( 2) = 2/3 + 2/3 =4/3

⇒         f ( 4 /3) = 3( 4/3 ) - 2 = 4 - 2 = 2

In the first case we plugged x = -1 in f (x) and got a value of -5.  Then we turned around and plugged x = -5 into g (x) and got a value of -1, the number which we started off with.

In the second case we did something same.  Here we plugged x = 2 into g ( x ) and got a value of 4/3, we turned around & plugged this into f ( x ) and got a value of 2, that is again the number that we begun with.

Note that we actually are doing some function composition here. The first case is,

 ( g o f ) ( -1) = g [f ( -1)]= g (-5) =-1

and the second case is,

 ( f o g ) ( 2) = f [g ( 2)] =f(4/3)=2

Note that these both agree with the formula for the compositions which we found in the previous section.  We get back of function evaluation the number which we originally plugged into the composition.

Thus, just what is going on here?  In some of the way we can think of these two functions as undoing what the other did with number.  In the primary case we plugged x = -1 into f ( x ) and then plugged the result from this function evaluation back into g (x ) and in some way g (x ) undid what f ( x ) had done to x = -1 and gave us back the original x which we started with.

Function pairs which exhibit this behavior are called inverse functions. Previous to formally defining inverse functions & the notation which we're going to use for them we have to get a definition out of the way.


Related Discussions:- Inverse functions

Hypergeometric distribution, Hypergeometric Distribution Consider the p...

Hypergeometric Distribution Consider the previous example of the batch of light bulbs. Suppose the Bernoulli experiment is repeated without replacement. That is, once a bulb is

Vectors, A triangle has vertices A (-1, 3, 4) B (3, -1, 1) and C (5, 1, 1)....

A triangle has vertices A (-1, 3, 4) B (3, -1, 1) and C (5, 1, 1). The area of ABC is a) 30.1 b) 82.1 c) 9.1 d) 52.1

Prove that rb is a tangent to the circle, QR is the tangent to the circle w...

QR is the tangent to the circle whose centre is P. If QA ||  RP and AB is the diameter, prove that RB is a tangent to the circle.

What is the maximum amount of hours cindy worked together, Carl worked thre...

Carl worked three more than twice as many hours as Cindy did. What is the maximum amount of hours Cindy worked if together they worked 48 hours at most? Let x = the amount of h

Integration by parts -integration techniques, Integration by Parts -Integra...

Integration by Parts -Integration Techniques Let's start off along with this section with a couple of integrals that we should previously be able to do to get us started. Fir

Example of linear in - equation - linear algebra, Explain some Examples of ...

Explain some Examples of linear in - Equation, with solution.

Algebra, prove That J[i] is an euclidean ring

prove That J[i] is an euclidean ring

1, how do you find the perimeter of an equalateral triangle

how do you find the perimeter of an equalateral triangle

More optimization problems, More Optimization Problems Example   A w...

More Optimization Problems Example   A window is being built in which the bottom is rectangle and the top is a semicircle. If there framing materials is 12 meters what have

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd