Introduction to probability, Applied Statistics

Assignment Help:

Introduction to Probability

A student is considering whether she should enroll in an MBA educational program offered by a well-known college. Among other things, she would like to know how difficult the program is she obtains the following marks distribution of students who appeared for the most final examination in the previous year.

Relative Frequency Distribution

Marks %

No. of students

% of students

0   - 25

 45

 8

25 - 50

280

50

50 - 75

205

37

75 - 100

30

 5

 

560

100

Assuming the next exam is equally tough and there are same proportion of dull and bright students, she may conclude that the percentage of students in the four classes of marks will again be

Marks %

% of students

0   - 25

8

25 - 50

50

50 - 75

37

75 - 100

5

 

100

The first distribution above is related to past data and is a frequency distribution. The second distribution has the same numbers and is a copy of the first distribution. However, this distribution relates to the future. Such a distribution is called a probability distribution. Note the similarity of this distribution with that of the relative frequency distribution.

Hence by inspecting the probability distribution we can say that:

8% of the students who are appearing for the exam will score 0 - 25% marks, 50% will score 25 - 50% marks, 37% will score 50 - 75% marks and the balance 5% will score 75 - 100% marks.

If our student considers herself to be among the top 5% of the students, she can conclude that she will score 75 - 100% marks. If she considers herself to be in the top 42% of students she can conclude that she will score 50 - 100% marks and so on. However, if she has no idea of her ability in relation to the other students she can conclude that:

She has an 8% chance of scoring 0 - 25% marks, a 50% chance of scoring
25 - 50% marks, a 37% chance of scoring 50 - 75% marks and a 5% chance of scoring 75 - 100% marks. This "chance" is called probability in statistical language.

Probability theory is used to analyze data for decision making.

The insurance industry uses probability theory to calculate premium rates. A stock analyst/investor, based on the probability estimates of economic scenarios and estimates the returns of the stocks. A project manager applies probability theory in decision-making.


Related Discussions:- Introduction to probability

Regression, Regression line drawn as Y=C+1075x, when x was 2, and y was 239...

Regression line drawn as Y=C+1075x, when x was 2, and y was 239, given that y intercept was 11. calculate the residual

Cluster analysis, Cluster Analysis could be also represented more formally ...

Cluster Analysis could be also represented more formally as optimization procedure, which tries to minimize the Residual Sum of Squares objective function: where μ(ωk) - is a centr

..National Account- Descriptive Statistics, A country''s national accounts ...

A country''s national accounts are assumed to look as follows: GDP 1180 VAT and taxes 140 Commodity subsidies 60 Raw material and consumables 530 1. Calculate GVA 2. Calculate t

Cartogram or mapograph, Cartogram or Mapograph:   Statistical maps are a...

Cartogram or Mapograph:   Statistical maps are also used to represent data like density of population indifferent states in the country or different countries in the world or th

Standard erro, practical application of standard error

practical application of standard error

#title. .explanatory factor analysis, how to compute reliability coefficien...

how to compute reliability coefficient for extracted factors in factor analysis?

Estimation, what do we mean by critical region

what do we mean by critical region

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd