Introduction to multiplication and division, Mathematics

Assignment Help:

INTRODUCTION :  When a Class 5 child was given the problem 'If I paid Rs. 60 for 30 pencil boxes, how much did b pencil box cost?', he said it would be 60 x 30 = 1800. This is in spite of the fact that he was considered a good student, and had done consistently well in all his tests dealing with multiplication and division. Unfortunately, he is not an exception. Why has such a situation arisen? To answer this we need to examine our teaching strategies thoroughly. We did this in the context of addition and subtraction in the last unit. In this unit we shall suggest some methods for communicating various aspects of multiplication and division to children. You could accept, discard or mode these strategies.

To start with, we shall look at ways of introducing children to multiplication. This operation, like additional and subtraction, is often used in daily life. For instance, when we go to the market and buy 10 Kg of rice at Rs.5 a Kg, we multiply to calculate the amount to be paid. Or, when we make arrangements-for lunch for 50 people, we multiply to estimate the total expenditure. Of course, you can think of many more examples. In the first two sections, we discuss ways of using such instances from a child's life to help her understand what multiplication is, and where it should be applied.

Here we look at problem related to rote learning of tables. Children are made to do this because, supposedly, it helps them to store the basic multiplication facts in the mind, and to retrieve them quickly as and when required. In this section we discuss why rote learning is not a good way of achieving this aim. What is required is repetition done in meaning and interesting ways, from the child's point of view.

Further we talk about problems that arise because of the usual way of teaching the multiplication algorithm. There are numerous examples of children learning to solve problems in a mechanical way and not understanding the meaning of what they are doing, producing answers which are nowhere near the order of magnitude expected. The child needs to learn more than just facts, and acquire more than just the ability to write the algorithm and perform it on a given set of numbers. we look at some ways of helping her to OG so.

Further we start our discussion on division, considered by many to be the most difficult of all the four fundamental operations. We have also discussed the different kinds of word problems related to division that children would come across. We go on to highlight the major difficulties faced by children while learning division and the different terminologies associated with division. Of course we have suggested some teaching strategies that may help solve these difficulties.

Here we discuss ways of solving the problems that children face when dealing with the division algorithm. We also explain why the algorithm works.

As in the other units, throughout this unit we have included several activities to make the learning of these concepts interesting to the child. We hope that you will adapt or extend them to help children learn other related concepts / processes / skills.


Related Discussions:- Introduction to multiplication and division

3, LAST COST METHOD

LAST COST METHOD

Ratio math help, Mr.Tanaka has 56 students in his choir the ratio of boys ...

Mr.Tanaka has 56 students in his choir the ratio of boys to girls is 3:4 how many boys and girls are in his class

Prove that the poset has a unique least element, Prove that the Poset has a...

Prove that the Poset has a unique least element Prove that if (A, ) has a least element, then (A,≤)  has a unique least element. Ans: Let (A, ≤) be a poset. Suppose the po

Learning to count in maths, Here we learn: 1) Discussed what counting me...

Here we learn: 1) Discussed what counting means, and stressed that it is not the ability to recite number names. 2) Talked about the need for a child to understand several pr

Find the perimeter of the rectangle, Find the perimeter of the figure, wher...

Find the perimeter of the figure, where AED is a semi-circle and ABCD is a rectangle.    (Ans : 76cm) Ans:    Perimeter of the fig = 20 + 14 + 20 + length of the arc (AED

Tent originally sold for $2 what is the percent of discount, A tent origina...

A tent originally sold for $260 and has been marked down to $208. What is the percent of discount? Find out the number of dollars off. $260 - $208 = $52. Further, determine wha

Co-ordinate geometry, CO-ORDINATE GEOMETRY : Mathematics  is  the  tool  s...

CO-ORDINATE GEOMETRY : Mathematics  is  the  tool  specially suited  for  dealing with  abstract concepts  of any  kind  and there  is  no limit  to  its  power  in this  field.

How many inches is the smaller dimension of the decreased, A photographer d...

A photographer decides to decrease a picture she took in sequence to fit it within a certain frame. She requires the picture to be one-third of the area of the original. If the ori

Evaluate the measure of the smallest angle, The calculation of the angles o...

The calculation of the angles of a triangle are shown by 2x + 15, x + 20 and 3x + 25. Evaluate the measure of the smallest angle within the triangle. a. 40° b. 85° c. 25°

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd