Introduction to helping children learn mathematics, Mathematics

Assignment Help:

INTRODUCTION :  Do you remember your school-going days, particularly your mathematics classes? What was it about those classes that made you like, or dislike, mathematics? In this unit we will be raising certain issues related to these questions. It is intimately related to the previous unit, where we discussed some aspects of children of preschool and primary school age. There we observed that:

i) A young child's way of thinking is qualitatively different from that of an adult's.

ii) Children follow a certain pattern in their overall development, and this pattern is more or less universal in nature. Individual children, however, differ in the pace at which they develop.

iii) Each child evolves her own way of 'making sense' of things around her.

iv) By the time a child enters formal school, she already knows some mathematics.

v) Young children use play and other activities to evolve strategies to understand the physical world around them.

vi) Older children also learn with concrete materials and games, and can make sense' of the formal knowledge given to them in school through such learning experiences.

vii) Unfortunately, most mathematics teachers emphasise algorithms and memorisation, rather than understanding. The "rules" of mathematics may be comprehensible to the adult mind, but need to be communicated to children in ways that the children can comprehend.

viii) We are intuitively aware of the long and arduous process that children go through while learning a single mathematical concept or skill. But the time-frame that the formal school system allows for "covering" the syllabus doesn't take this into account.

This list is not exhaustive. Why don't you quickly run and complete the list? You may find this useful, because the present unit focuses on the implications of those points for teaching.

In this unit, we have made an attempt to highlight some of the principles that need to be kept in mind while teaching mathematics to children of preschool and primary school. Doing this would help in creating a learning environment for a preschool or primary school child that is appropriate for her stage of development, her needs, her ways of thinking and learning, and her pace of learning.

We have also given some examples of the kind of activities or opportunities that can be given to children to help them develop mathematical thinking.

Unfortunately, the examples of activities that we suggest are mostly from an urban situation. In fact, it is also difficult to think of examples common to all urban areas. We hope that you will adapt the activities to suit the needs of your learners.


Related Discussions:- Introduction to helping children learn mathematics

Which team should get the ball at the beginning, Why is tossing a coin cons...

Why is tossing a coin considered to be a fair way of deciding which team should get the ball at the beginning of a foot ball match? Ans: equally likely because they are mutual

Determine the area of the sail, If a triangular sail has a horizontal lengt...

If a triangular sail has a horizontal length of 30 ft and a vertical height of 83 ft , Determine the area of the sail? a. 1,245 ft 2 b. 1,155 ft 2 c. 201 ft 2 d. 2,4

Solve the differential equation, Solve the subsequent differential equation...

Solve the subsequent differential equation and find out the interval of validity for the solution. Let's start things off along with a fairly simple illustration so we can notic

Simple interest, find the simple interest on Rs. 68,000 at 50/3 per annum f...

find the simple interest on Rs. 68,000 at 50/3 per annum for 9 month

Combined mean and standard deviation -illustration, Combined mean Assu...

Combined mean Assume m be the combined mean Assume x 1 be the mean of first sample Assume x 2 be the mean of the second sample Assume n 1 be the size of the 1 st

Division of two like terms, Case 1: Suppose we have two terms 8ab and 4ab. ...

Case 1: Suppose we have two terms 8ab and 4ab. On dividing the first by the second we have 8ab/4ab = 2 or 4ab/8ab = (1/2) depending on whether we consider either 8ab or 4ab as the

What is the cost to generate, The production costs per week for generating ...

The production costs per week for generating x widgets is given by, C ( x ) = 500 + 350 x - 0.09 x 2 ,         0 ≤ x ≤ 1000 Answer following questions.  (a) What is the c

Percentage, 7 is what percent of 105?.

7 is what percent of 105?.

GEOMETRIC PROGRESSION, THE FIRST AND THIRD TERM OF A G.P ARE 8 AND 18 RESPE...

THE FIRST AND THIRD TERM OF A G.P ARE 8 AND 18 RESPECTIVELY AND THE COMMON RATIO IS POSITIVE.FIND THE COMMON RATIO

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd