Introduction to helping children learn mathematics, Mathematics

Assignment Help:

INTRODUCTION :  Do you remember your school-going days, particularly your mathematics classes? What was it about those classes that made you like, or dislike, mathematics? In this unit we will be raising certain issues related to these questions. It is intimately related to the previous unit, where we discussed some aspects of children of preschool and primary school age. There we observed that:

i) A young child's way of thinking is qualitatively different from that of an adult's.

ii) Children follow a certain pattern in their overall development, and this pattern is more or less universal in nature. Individual children, however, differ in the pace at which they develop.

iii) Each child evolves her own way of 'making sense' of things around her.

iv) By the time a child enters formal school, she already knows some mathematics.

v) Young children use play and other activities to evolve strategies to understand the physical world around them.

vi) Older children also learn with concrete materials and games, and can make sense' of the formal knowledge given to them in school through such learning experiences.

vii) Unfortunately, most mathematics teachers emphasise algorithms and memorisation, rather than understanding. The "rules" of mathematics may be comprehensible to the adult mind, but need to be communicated to children in ways that the children can comprehend.

viii) We are intuitively aware of the long and arduous process that children go through while learning a single mathematical concept or skill. But the time-frame that the formal school system allows for "covering" the syllabus doesn't take this into account.

This list is not exhaustive. Why don't you quickly run and complete the list? You may find this useful, because the present unit focuses on the implications of those points for teaching.

In this unit, we have made an attempt to highlight some of the principles that need to be kept in mind while teaching mathematics to children of preschool and primary school. Doing this would help in creating a learning environment for a preschool or primary school child that is appropriate for her stage of development, her needs, her ways of thinking and learning, and her pace of learning.

We have also given some examples of the kind of activities or opportunities that can be given to children to help them develop mathematical thinking.

Unfortunately, the examples of activities that we suggest are mostly from an urban situation. In fact, it is also difficult to think of examples common to all urban areas. We hope that you will adapt the activities to suit the needs of your learners.


Related Discussions:- Introduction to helping children learn mathematics

Permatuation and combination problem, 4 boys and 4 girls are to seated in a...

4 boys and 4 girls are to seated in arow i)no. of girls sit together ii)not all girls sit together iii)boys and girls are altenate to each other iv)if a particular boy and g

How much sales tax did she pay if items was 6 percent, Lindsay purchased a ...

Lindsay purchased a pocketbook for $45 and a pair of shoes for $55. The sales tax on the items was 6%. How much sales tax did she pay? Find out the price of the two items toget

I need help with my homework.., Uh on my homework it says 6m = $5.76 and I ...

Uh on my homework it says 6m = $5.76 and I dont get it..

Steel bar to make a hard surface, Take the carburizing of a steel bar to ma...

Take the carburizing of a steel bar to make a hard surface. To obtain the desired hardness, we require to control the diffusion of carbon into the surface and the phases obtained d

what is probability that point will be chosen from triagle, In the adjoini...

In the adjoining figure ABCD is a square with sides of length 6 units points P & Q are the mid points of the sides BC & CD respectively. If a point is selected at random from the i

Trigonometry 2, three towns are situated in such away that town B is 120 ki...

three towns are situated in such away that town B is 120 kilometers on a bearing of 030 degrees from town A. Town C is 210 kilometers on a bearing of 110 degrees from town A (a)ca

Find out the domain of function - three dimensional space, Find out the dom...

Find out the domain of each of the following.  (a) f (x,y) = √ (x+y) (b) f (x,y) = √x+√y  (c) f (x,y) = ln (9 - x 2 - 9y 2 ) Solution (a) In this example we know

Complementary addition model, E1) How is the 'comparison model' different...

E1) How is the 'comparison model' different from the 'complementary addition model'? E2) Create one word problem related to the children's world for each of the 4 models liste

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd