Intrinsic material, Electrical Engineering

Assignment Help:

Intrinsic Material

  1. A perfect semiconductor crystal with no impurities or lattice defects.
  2. No carriers at 0 K, since the valence band is completely full and the conduction band is completely empty.
  3. For T > 0 K, electrons are thermally excited from the valence band to the conduction band (EHP generation).
  4. EHP generation takes place due to breaking of covalent bonds => required energy = Eg.
  5. The excited electron becomes free and leaves behind an empty state (hole).
  6. Since these carriers are created in pairs, the electron concentration (n/cm3) is always equal to the hole concentration (p/cm3), and each of these is commonly referred to as the intrinsic carrier concentration (ni).
  7. Thus, for intrinsic material n = p = ni.
  8. These carriers are not localized in the lattice; instead they spread out over several lattice spacings, and are given by quantum mechanical probability distributions.
  9. Note: ni = f (T).
  10. To maintain a steady-state carrier concentration, the carriers must also recombine at the same rate at which they are generated.
  11. Recombination occurs when an electron from the conduction band makes a transition (direct or indirect) to an empty state in the valence band, thus annihilating the pair.
  12. At equilibrium, ri =gi, where gi and ri are the generation and recombination rates respectively, and both of these are temperature dependent.
  13. gi(T) increases with temperature, and a new carrier concentration ni is established, such that the higher recombination rate ri(T) just balances generation.
  14. At any temperature, the rate of recombination is proportional to the equilibrium concentration of electrons and holes, and can be given by ri= αrn0p0 = αrni2=gi(5) where αris a constant of proportionality (depends on the mechanism by which recombination takes place).

Related Discussions:- Intrinsic material

The internal resistance of the zener diode, A 9.1V zener diode has a nomina...

A 9.1V zener diode has a nominal voltage fall at a test current of 28mA. The internal resistance of the zener diode is 5 ohms. Find the voltage drop across the zener diode at zener

Effect of frequency - stepper motor , Effect of Frequency a.From equa...

Effect of Frequency a.From equation for given  H p and μ P v α √f b.From  equation the depth of penetration for a given  material δ α 1/ √f c.From  equation hyst

Determine the capacitor and inductor voltages, Experiment • Wire the circu...

Experiment • Wire the circuit shown in Figure. Connect the three oscilloscope channels as shown in Figure. • Select the sinusoidal waveform. Adjust the frequency of the input volt

Determine the dielectric constant of slab, Determine the Dielectric constan...

Determine the Dielectric constant of slab: An air capacitor contains two parallel plates 10 cm 2 in area and 0.5 cm apart. While a dielectric slab of area 10 cm2 and thicknes

What is meant by wait state, What is meant by Wait State? This state is...

What is meant by Wait State? This state is used by slow peripheral devices. The peripheral devices can transmitted the data to or from the microprocessor by using READY input l

PIC Controller Programming, I want to do programming in PIC controller and ...

I want to do programming in PIC controller and it needs to be done on particular development board.

Operation of mosfet, Operation of MOSFET The operation of a metal-oxi...

Operation of MOSFET The operation of a metal-oxide-semiconductor field-effect transistor which is abbreviated as MOSFET can be separated into three modes, depending upon the

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd