Intrinsic material, Electrical Engineering

Assignment Help:

Intrinsic Material

  1. A perfect semiconductor crystal with no impurities or lattice defects.
  2. No carriers at 0 K, since the valence band is completely full and the conduction band is completely empty.
  3. For T > 0 K, electrons are thermally excited from the valence band to the conduction band (EHP generation).
  4. EHP generation takes place due to breaking of covalent bonds => required energy = Eg.
  5. The excited electron becomes free and leaves behind an empty state (hole).
  6. Since these carriers are created in pairs, the electron concentration (n/cm3) is always equal to the hole concentration (p/cm3), and each of these is commonly referred to as the intrinsic carrier concentration (ni).
  7. Thus, for intrinsic material n = p = ni.
  8. These carriers are not localized in the lattice; instead they spread out over several lattice spacings, and are given by quantum mechanical probability distributions.
  9. Note: ni = f (T).
  10. To maintain a steady-state carrier concentration, the carriers must also recombine at the same rate at which they are generated.
  11. Recombination occurs when an electron from the conduction band makes a transition (direct or indirect) to an empty state in the valence band, thus annihilating the pair.
  12. At equilibrium, ri =gi, where gi and ri are the generation and recombination rates respectively, and both of these are temperature dependent.
  13. gi(T) increases with temperature, and a new carrier concentration ni is established, such that the higher recombination rate ri(T) just balances generation.
  14. At any temperature, the rate of recombination is proportional to the equilibrium concentration of electrons and holes, and can be given by ri= αrn0p0 = αrni2=gi(5) where αris a constant of proportionality (depends on the mechanism by which recombination takes place).

Related Discussions:- Intrinsic material

Show balanced three-phase loads, Q. Show Balanced three-phase loads? Th...

Q. Show Balanced three-phase loads? Three-phase loads can be connected in either wye (also known as star or Y) or delta (otherwise known as mesh or ). If the load impedances i

Draw the timing diagram for the first input pulses, Given the block diagram...

Given the block diagram of a synchronous counter shown in Figure (a), draw the timing diagram for the first input pulses, with Q 1 , Q 2 , and Q 3 initially at 0.

Assignment question , An audio amplifier with feedback needs gain of approx...

An audio amplifier with feedback needs gain of approximately 500 in a 3-dB bandwidth extending from 60 Hz to 25 kHz. Assume this is accomplished using a feedback network with ß=0.0

Minimum value of rl that can be used, Verify the minimum & maximum load cur...

Verify the minimum & maximum load current for which the zener diode will keep regulation. Find the minimum value of RL that can be used. The zener diode has V Z = 12V, I ZK =

\, Refer to Figure 100. Assume MKS units. Given: R1= 4, R2=14, R3= 9, I4...

Refer to Figure 100. Assume MKS units. Given: R1= 4, R2=14, R3= 9, I4= 8, I5= 7. Determine: Ieq, Req, and V3.

engine-based combined heat and power, In this assignment, you will investi...

In this assignment, you will investigate the low-carbon technology that would be most suitable to provide heat and power for a domestic building. • Using information try to iden

Minimized circuit using or and and not gate, Given S(F) = A'B +'C'D + C'D +...

Given S(F) = A'B +'C'D + C'D +'A'B + 'A B + 'A 'C + 'A D + 'A C A. DRAW A MINIMIZED CIRCUIT USING ONLY OR AND NOT GATES (2 input gates) B. WRITE THE WIRE LIST Example of a

Allocative efficiency, Allocative Efficiency: A neoclassical concept refer...

Allocative Efficiency: A neoclassical concept referring to allocation of productive resources (labour, capital, etc.) in a manner that best maximizes well-being (or 'utility') of

Obtain rated fundamental voltage across the motor, A 440-V, 60-Hz, six-pole...

A 440-V, 60-Hz, six-pole, wye-connected, squirrel-cage induction motor with a full-load speed of 1170 r/min has the following parameters per phase referred to the stator: R 1 = 0.

Obtain the expression for the steady-state coil current, Q. Let the coil of...

Q. Let the coil of the solenoid of have a resistance R and be excited by a voltage v = Vm sin ωt. Consider a plunger displacement of g = g 0 . (a) Obtain the expression for the

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd