Intrinsic material, Electrical Engineering

Assignment Help:

Intrinsic Material

  1. A perfect semiconductor crystal with no impurities or lattice defects.
  2. No carriers at 0 K, since the valence band is completely full and the conduction band is completely empty.
  3. For T > 0 K, electrons are thermally excited from the valence band to the conduction band (EHP generation).
  4. EHP generation takes place due to breaking of covalent bonds => required energy = Eg.
  5. The excited electron becomes free and leaves behind an empty state (hole).
  6. Since these carriers are created in pairs, the electron concentration (n/cm3) is always equal to the hole concentration (p/cm3), and each of these is commonly referred to as the intrinsic carrier concentration (ni).
  7. Thus, for intrinsic material n = p = ni.
  8. These carriers are not localized in the lattice; instead they spread out over several lattice spacings, and are given by quantum mechanical probability distributions.
  9. Note: ni = f (T).
  10. To maintain a steady-state carrier concentration, the carriers must also recombine at the same rate at which they are generated.
  11. Recombination occurs when an electron from the conduction band makes a transition (direct or indirect) to an empty state in the valence band, thus annihilating the pair.
  12. At equilibrium, ri =gi, where gi and ri are the generation and recombination rates respectively, and both of these are temperature dependent.
  13. gi(T) increases with temperature, and a new carrier concentration ni is established, such that the higher recombination rate ri(T) just balances generation.
  14. At any temperature, the rate of recombination is proportional to the equilibrium concentration of electrons and holes, and can be given by ri= αrn0p0 = αrni2=gi(5) where αris a constant of proportionality (depends on the mechanism by which recombination takes place).

Related Discussions:- Intrinsic material

Explain about common channel signalling, Q. Explain about Common Channel Si...

Q. Explain about Common Channel Signalling? Common Channel Signalling (CCS), centralized maintenance and automatic faultdiagnosis and interactive human-machine interface are so

Sub instruction - op code format , SUB Instruction Op code  format is...

SUB Instruction Op code  format is of SUB  instruction is Replace  the three bit code  of the register R from   to obtain the op code of the  required SUB  instruction . o

Multimeter probes, different types of probes used in multimeter

different types of probes used in multimeter

Thermal –root , A moving coil galvanometer consists of a coil  in a uniform...

A moving coil galvanometer consists of a coil  in a uniform magnetic field B o, suspended fro a fibre of torque constant C, current I produces a deflection O=nAB o i/c where n is

Differences between a timer and a counter, Question : a) Embedded Syste...

Question : a) Embedded Systems will be Hard Real-Time Systems, Soft Real-Time Systems and Hybrid Real-Time Systems. Briefly explain all three types of Real-Time Systems, using

Induced emf, what is the difference between statically and dynamically indu...

what is the difference between statically and dynamically induced emf?

Voltage regulator, Voltage regulator: A voltage regulator is an electr...

Voltage regulator: A voltage regulator is an electrical regulator intended to automatically keep a constant voltage level. A voltage regulator is an instance of a negative fee

Find the parameter values for channel mosfet, Q. Find the parameter values ...

Q. Find the parameter values V T and I DSS for a p- channel MOSFET with i D = 0 when v GS ≤-3 V, and i D = 5 mA when v GS = v DS =-8V.You may neglect the effect of v DS on

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd