Interpretations of definite integral, Mathematics

Assignment Help:

Interpretations of Definite Integral

There are some quick interpretations of the definite integral which we can give here.

Firstly, one possible interpretation of the definite integral is to give the net area among the graph of f (x) and the x-axis on the interval [a,b].  Therefore, the net area among the graph of

f ( x ) = x2 + 1 and the x-axis on [0,2] is,

                                              ∫02  x2  + 1dx=14/3

This was the exact area which was given for the initial set of problems that we looked at in this area.

Another interpretation is sometimes called the Net Change Theorem.  This interpretation says that if  f( x ) is some quantity (hence f ′ ( x ) is the rate of change of f ( x) , then,

                                                     ∫ab  f ′ ( x ) dx = f (b ) - f ( a )

is the net change in f ( x )on the interval [a,b].  In other terms, calculate the definite integral of a rate of change & you'll obtain the net change in the quantity.  We can illustrates that the value of the definite integral, f (b ) - f ( a ) , does actually give use the net change in f ( x ) and therefore there actually isn't anything to prove with this statement. It is actually just an acknowledgment of what the definite integral of a rate of change tells us.

Therefore as a quick example, if V (t ) is the volume of water within a tank then,

29_Definite Integral3.png

is the total change in the volume as we go from time t1  to time t2 .

Similarly, if s (t ) is the function giving the position of some of the object at time t we know that the velocity of the object at any time t is : v (t ) = s′ (t ) . Thus the displacement of the object time t1  to time t2 is,

1093_Definite Integral4.png

Note as well that in this case if v (t ) is both positive & negative (that means the object moves to both the right & left) in the time frame it will NOT give the net distance traveled.  It will just give the displacement that means the difference amongst where the object started and where it ended up. To obtain the total distance traveled by an object we'd ought to compute,

732_Definite Integral5.png

It is significant to note here that the Net Change Theorem only actually makes sense if we're integrating derivative of a function.


Related Discussions:- Interpretations of definite integral

Solve out the linear equations, Solve out each of the following equations. ...

Solve out each of the following equations.                3( x + 5)= 2 ( -6 - x ) - 2x Solution In the given problems we will explained in detail the first problem and t

Series solution, Find the series solution of2x2y”+xy’+(x2-3)Y=0 about regul...

Find the series solution of2x2y”+xy’+(x2-3)Y=0 about regular singular point

Find the volume and surface area of the double cone formed, A right triangl...

A right triangle whose sides are 15 cm and 20 cm is made to revolve about its hypotenuse. Find the volume and surface area of the double cone so formed. (Ans : 3768cu.cm,1318.8

Example of integration strategy - integration techniques, Evaluate the subs...

Evaluate the subsequent integral. ∫ (tan x/sec 4 x / sec 4 x)  dx Solution This kind of integral approximately falls into the form given in 3c.  It is a quotient of ta

Set, What is the definition of Set?

What is the definition of Set?

Show that af+bd+ce=ae+bf+cd= 1/2 , In figure, the incircle of triangle ABC...

In figure, the incircle of triangle ABC touches the sides BC, CA, and AB at D, E, and F respectively. Show that AF+BD+CE=AE+BF+CD= 1/2   (perimeter of triangle ABC), Ans:

Show that the height of the aero plane, From  an  aero  plane  vertically  ...

From  an  aero  plane  vertically  above  a  straight  horizontal  road,  the  angles  of depression of two consecutive milestones on opposite sides of the aero plane are observed

Alphabet is any arrangement , A word on an alphabet is any arrangement of t...

A word on an alphabet is any arrangement of the letters in the alphabet. For example,ODD, DOD, DOO, DDD are three-letter words on the alphabet {D,O}. How many four-letter words are

Sharon purchased six movie tickets how much was each ticket, Sharon purchas...

Sharon purchased six adult movie tickets. She spent $43.50 on the tickets. How much was each ticket? To ?nd out the price of each individual ticket, you should divide the total

Proof of: limq?0 (cosq -1)/q = 0 trig limit, Proof of: lim q →0 (co...

Proof of: lim q →0 (cos q -1) / q = 0 We will begin by doing the following, lim q →0 (cosq -1)/q = lim q →0 ((cosq - 1)(cosq + 1))/(q (cosq + 1)) = lim q

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd