Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Intermediate Value Theorem
Suppose that f(x) is continuous on [a, b] and allow M be any number among f(a) and f(b). There then exists a number c such that,
1. a < c < b
2. f (c ) = M
All of the Intermediate Value Theorem is actually saying is that a continuous function will take on all values among f(a) & f(b). Below is a graph of continuous function which illustrates the Intermediate Value Theorem.
As we can illustrates from this image if we pick up any value, M, that is among the value of f(a) and the value of f(b) and draw line straight out from this point the line will hit the graph in at least at one point. In other terms somewhere between a & b the function will take on the value of M. Also, as the figure illustrates the function might take on the value at more than one place.
It's also significant to note that the Intermediate Value Theorem only says that the function will take on the value of M somewhere among a & b. It doesn't say just what that value will be. It just says that it exists.
hence, the Intermediate Value Theorem tells us that a function will take the value of M somewhere among a & b but it doesn't tell us where it will take the value nor does it tell us how several times it will take the value. There is significant idea to remember regarding the Intermediate Value Theorem.
A fine use of the Intermediate Value Theorem is to prove the existence of roots of equations as the given example shows.
2+(+3)=
The mode Merits i. This can be determined from incomplete data given the observations along with the highest frequency are already known ii. The mode has some applic
y 2 = t 2 - 3 is the actual implicit solution to y'= t/y, y(2) = -1. At such point I will ask that you trust me that it is actually a solution to the differential equation. You w
sine law application
Thomas is remaining track of the rainfall in the month of May for his science project. The first day, 2.6 cm of rain fell. On the second day, 3.4 cm fell. On the third day, 2.1 cm
how to find the inverse of an equation
The law of cosines can only be applied to acute triangles. Is this true or false?
You have been research for your statistics class on how nervous the American adults are in general, you have decided to use HINTS 2007 data set that has a scale (going from 0 to 24
In triangle DEF, angle E is congruent to angle F. If side DE = 3x-6, Side EF = x+2 and Side DF = 18-5x. Find the length of side DE
examples of least cost method
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd