Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Intermediate Value Theorem
Suppose that f(x) is continuous on [a, b] and allow M be any number among f(a) and f(b). There then exists a number c such that,
1. a < c < b
2. f (c ) = M
All of the Intermediate Value Theorem is actually saying is that a continuous function will take on all values among f(a) & f(b). Below is a graph of continuous function which illustrates the Intermediate Value Theorem.
As we can illustrates from this image if we pick up any value, M, that is among the value of f(a) and the value of f(b) and draw line straight out from this point the line will hit the graph in at least at one point. In other terms somewhere between a & b the function will take on the value of M. Also, as the figure illustrates the function might take on the value at more than one place.
It's also significant to note that the Intermediate Value Theorem only says that the function will take on the value of M somewhere among a & b. It doesn't say just what that value will be. It just says that it exists.
hence, the Intermediate Value Theorem tells us that a function will take the value of M somewhere among a & b but it doesn't tell us where it will take the value nor does it tell us how several times it will take the value. There is significant idea to remember regarding the Intermediate Value Theorem.
A fine use of the Intermediate Value Theorem is to prove the existence of roots of equations as the given example shows.
assigenment of b.sc.1sem
Determine how many square centimeters of paper are needed to make a label on a cylindrical can 45 cm tall with a circular base having diameter of 20 cm. Leave answer in terms of π.
X-intercept If an intercept crosses the x-axis we will call it as x-intercept . Y-intercept Similar, if an intercept crosses the y-axis we will call it as a y-inter
F(x)=2x+3
There is a staircase as shown in figure connecting points A and B. Measurements of steps are marked in the figure. Find the straight distance between A and B. (Ans:10) A ns
For a population with a mean of μ=80 and a standard deviation of o=12, find the z-score corresponding to each of the following samples. a. M=83 for a sample of n=4 scores b.
what is the value of integration limit n-> infinity [n!/n to the power n]to the power 1/n Solution) limit n-->inf. [1 + (n!-n^n)/n^n]^1/n = e^ limit n-->inf. {(n!-n^n)
Simultaneous equations by substitution: Solve the subsequent simultaneous equations by substitution. 3x + 4y = 6 5x + 3y = -1 Solution: Solve for x: 3x = 6
what are these all about and could i have some examples of them please
Differentiation Formulas : We will begin this section with some basic properties and formulas. We will give the properties & formulas in this section in both "prime" notation &
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd