Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Intermediate Value Theorem
Suppose that f(x) is continuous on [a, b] and allow M be any number among f(a) and f(b). There then exists a number c such that,
1. a < c < b
2. f (c ) = M
All of the Intermediate Value Theorem is actually saying is that a continuous function will take on all values among f(a) & f(b). Below is a graph of continuous function which illustrates the Intermediate Value Theorem.
As we can illustrates from this image if we pick up any value, M, that is among the value of f(a) and the value of f(b) and draw line straight out from this point the line will hit the graph in at least at one point. In other terms somewhere between a & b the function will take on the value of M. Also, as the figure illustrates the function might take on the value at more than one place.
It's also significant to note that the Intermediate Value Theorem only says that the function will take on the value of M somewhere among a & b. It doesn't say just what that value will be. It just says that it exists.
hence, the Intermediate Value Theorem tells us that a function will take the value of M somewhere among a & b but it doesn't tell us where it will take the value nor does it tell us how several times it will take the value. There is significant idea to remember regarding the Intermediate Value Theorem.
A fine use of the Intermediate Value Theorem is to prove the existence of roots of equations as the given example shows.
i need to work out the standard deviation of 21.4
Mike can jog 6.5 miles per hour. At this rate, how many miles will he jog in 30 minutes? Thirty minutes is half an hour. Thus, divide the number of miles Mike can jog in one ho
A 3 km pipe starts from point A end at point B Population = 3000 people Q = 300 L/day/person Roughness = cast ion pipe Length of the pipe = 3km Case 1 From A to B
evaluate limit as x approaches 0 (x squared times sin (1/x)
Define an ordered rooted tree. Cite any two applications of the tree structure, also illustrate using an example each the purpose of the usage. Ans: A tree is a graph like t
2/4t=1/2
what is mean and mode
1) Compute the center of mass of the solid of unit density 1 bounded (in spherical coordinates) by p=1 and by φ is greater than or equal 0 and less than or equal pi/4
one bathroom is 0.3m long how long is a row of 8 tiles
Juan is g years old and Eva is 2 years younger than Juan. a.Find the sum of their ages in terms of g. b.Find the sum of their ages in g years'' time,in terms of g.
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd