Intermediate value theorem, Mathematics

Assignment Help:

Intermediate Value Theorem

Suppose that f(x) is continuous on [a, b] and allow M be any number among f(a) and f(b).   There then exists a number c such that,

1. a < c < b

2. f (c ) = M

All of the Intermediate Value Theorem is actually saying is that a continuous function will take on all values among f(a) & f(b).  Below is a graph of continuous function which illustrates the Intermediate Value Theorem.

2208_Intermediate Value Theorem.png

As we can illustrates from this image if we pick up any value, M, that is among the value of f(a) and the value of f(b) and draw line straight out from this point the line will hit the graph in at least at one point.  In other terms somewhere between a & b the function will take on the value of M.  Also, as the figure illustrates the function might take on the value at more than one place.

It's also significant to note that the Intermediate Value Theorem only says that the function will take on the value of M somewhere among a & b.  It doesn't say just what that value will be.  It just says that it exists.

hence, the Intermediate Value Theorem tells us that a function will take the value of M somewhere among a & b but it doesn't tell us where it will take the value nor does it tell us how several times it will take the value. There is significant idea to remember regarding the Intermediate Value Theorem.

A fine use of the Intermediate Value Theorem is to prove the existence of roots of equations as the given example shows.


Related Discussions:- Intermediate value theorem

Definition of natural exponential function, Definition of Natural exponenti...

Definition of Natural exponential function:   The natural exponential function is f( x ) = e x   where, e= 2.71828182845905........ . Hence, since e > 1 we also know that e x

Payoff Matrix, A farmer grows apples on her 400-acre farm and must cope wit...

A farmer grows apples on her 400-acre farm and must cope with occasional infestations of worms. If she refrains from using pesticides, she can get a premium for "organically grown"

Prove that prims algorithm produces a minimum spanning tree, Prove that Pri...

Prove that Prim's algorithm produces a minimum spanning tree of a connected weighted graph. Ans: Suppose G be a connected, weighted graph. At each iteration of Prim's algorithm

Ratio, which ratio is largar. 1. 15:16 or 24:25

which ratio is largar. 1. 15:16 or 24:25

Break even point, what is break even point and how can it helps managers to...

what is break even point and how can it helps managers to make decisions?

Modelling the maximum volume, what are the dimensions of the box that can b...

what are the dimensions of the box that can be made if squares of x cm by x cm is cut off from 20cm by 20cm square paper

Systems of equations revisited, Systems of Equations Revisited We requ...

Systems of Equations Revisited We require doing a quick revisit of systems of equations. Let's establish with a general system of equations. a 11 x 1 + a 12 x 2 +......

Definite integral, from 0->1: Int sqrt(1-x^2) Solution) I=∫sqrt(1-x 2 ...

from 0->1: Int sqrt(1-x^2) Solution) I=∫sqrt(1-x 2 )dx = sqrt(1-x 2 )∫dx - ∫{(-2x)/2sqrt(1-x 2 )}∫dx ---->(INTEGRATION BY PARTS)        = x√(1-x 2 ) - ∫-x 2 /√(1-x 2 ) Let

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd