Intermediate value theorem, Mathematics

Assignment Help:

Intermediate Value Theorem

Suppose that f(x) is continuous on [a, b] and allow M be any number among f(a) and f(b).   There then exists a number c such that,

1. a < c < b

2. f (c ) = M

All of the Intermediate Value Theorem is actually saying is that a continuous function will take on all values among f(a) & f(b).  Below is a graph of continuous function which illustrates the Intermediate Value Theorem.

2208_Intermediate Value Theorem.png

As we can illustrates from this image if we pick up any value, M, that is among the value of f(a) and the value of f(b) and draw line straight out from this point the line will hit the graph in at least at one point.  In other terms somewhere between a & b the function will take on the value of M.  Also, as the figure illustrates the function might take on the value at more than one place.

It's also significant to note that the Intermediate Value Theorem only says that the function will take on the value of M somewhere among a & b.  It doesn't say just what that value will be.  It just says that it exists.

hence, the Intermediate Value Theorem tells us that a function will take the value of M somewhere among a & b but it doesn't tell us where it will take the value nor does it tell us how several times it will take the value. There is significant idea to remember regarding the Intermediate Value Theorem.

A fine use of the Intermediate Value Theorem is to prove the existence of roots of equations as the given example shows.


Related Discussions:- Intermediate value theorem

Example of product moment correlation, Example of Product moment correlatio...

Example of Product moment correlation The given data was acquired during a social survey conducted in a described urban area regarding the yearly income of described families

Sum, what is an equation for circle?..

what is an equation for circle?..

Fundamental theorem of calculus, Fundamental Theorem of Calculus, Part I ...

Fundamental Theorem of Calculus, Part I As noted through the title above it is only the first part to the Fundamental Theorem of Calculus. The first part of this theorem us

Determine the largest possible domain and inverse function, Consider the fu...

Consider the function f(x) =1/2 (2 x +2 -x ) which has the graph (a) Explain why f has no inverse function. You should include an example to support your explanation

Geometry, the segments shown could form a triangle

the segments shown could form a triangle

Calculate the slope of the line, Calculate the slope of the line: Exa...

Calculate the slope of the line: Example: calculate  the  slope  of  the  line  whose  equation  is  y  =  2x  +  3  and  whose y-intercept is (0,3). Solution:    y =

Geometric progression (g.p.), Learning geometric progression ...

Learning geometric progression vis-á-vis arithmetic progression should make it easier. In geometric progression also we denote the first t

Geometria, un prisma retto ha per base un rombo avente una diagonale lunga ...

un prisma retto ha per base un rombo avente una diagonale lunga 24cm. sapendo che la superficie laterale e quella totale misurano rispettivamente 2800cm e3568cm ,calcola la misura

Explain basic geometric concepts, Explain Basic Geometric Concepts ? P...

Explain Basic Geometric Concepts ? Points, lines, and planes are the most fundamental concepts in the study of geometry. Points A point has no length, width or heig

Laplace transforms, Here is not too much to this section. We're here going ...

Here is not too much to this section. We're here going to work an illustration to exemplify how Laplace transforms can be used to solve systems of differential equations. Illus

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd