Integration by parts -integration techniques, Mathematics

Assignment Help:

Integration by Parts -Integration Techniques

Let's start off along with this section with a couple of integrals that we should previously be able to do to get us started. Firstly let's take a look at the following.

∫ ex dx = ex + c

Thus, that was simple enough.  Now, let's take a look at,

∫ xex2 dx

To do this integral we'll make use of the following substitution.

U = x2   du=2xdx => xdx = ½ du

∫ xex2 dx = ½ ∫ eu du ½ eu + c=1/2 ex2 + c

Once Again, simple enough to do offer you remember how to do substitutions.  By the way ensure that you can do these types of substitutions quickly and easily.  From this point on we are going to be doing these types of substitutions in our head.  If you have to prevent and write these out with each problem you will find out that it will take you considerably longer to do these problems.

Now, let's look at the integral that we really wish to do.

∫ xe6x dx

If we just had an x by itself or e6x by itself we could do the integral easily.  Although, we don't have them by themselves, they are in place of multiplied together.

There is no substitution that we can use on this integral that will allow us to do the integral.  So, at this point we don't have the knowledge to do this integral.

To do this integral we will require to make use of integration by parts so let's derive the integration by parts formula. We'll begin with the product rule.

(f g)′ = f'g + f g′

Here, integrate both sides of this.

∫ (f g)′ dx = ∫ f ′ g + f g′ dx

The left side is very easy to integrate and we'll divide the right side of the integral.

Fg = ∫ f' g dx + ∫ fg'dx

Note: Technically we should comprise had a constant of integration show up on the left side later than doing the integration. We can drop it at this point as other constants of integration will be showing up down the road and they would just end up absorbing this one.

At last, rewrite the formula as follows and we arrive at the integration by parts formula.

∫ f g′ dx = fg - ∫ f ′ g dx

Though, this is not the easy formula to use.  Thus, let's do a couple of substitutions.

u = f (x)

v = g (x)

du = f ′ (x) dx

dv = g ′ (x) dx

Both of these formulas are just the standard Calc I substitutions which hopefully you are used to by now. Don't get excited by the fact that we are by using 2 substitutions here. They will work similar way.

By using these substitutions provides us the formula that most people think of as the integration by parts formula.

∫ u dv = uv - ∫ v du

To employ this formula we will require identifying u and dv, calculating du and v and then using the formula. Note also that computing v is very easy.  All we require to do is integrate dv.

v = ∫ dv

So, let's take a look at the integral above that we specified we wanted to do.


Related Discussions:- Integration by parts -integration techniques

Write down the system of differential equations, Write down the system of d...

Write down the system of differential equations for mass system and the spring above. Solution To assist us out let's first take a rapid look at a situation wherein both of

Give the introduction to ratios and proportions, Give the introduction to R...

Give the introduction to Ratios and Proportions? A ratio represents a comparison between two values. A ratio of two numbers can be expressed in three ways: A ratio of "one t

Solve the algebraic equestions, Solve the following equestions i.2x-8=8 ...

Solve the following equestions i.2x-8=8 ii.3x+2/5=4 iii.8/3x-2=2 iv.0.6x-5=7

Introduction to knowing your maths learner, INTRODUCTION : The other day I...

INTRODUCTION : The other day I overheard 6-year-old Ahmed explaining to his older sister about why swallowing the seeds of an orange is harmful. He said, "The seed will become a p

Functions of limits, Following is some more common functions that are "nice...

Following is some more common functions that are "nice enough". Polynomials are nice enough for all x's. If f ( x) = p ( x ) /q (x ) then f(x) will be nice enough provid

Velocity and acceleration - three dimensional space, Velocity and Accelerat...

Velocity and Acceleration - Three Dimensional Space In this part we need to take a look at the velocity and acceleration of a moving object.    From Calculus I we are famili

What is his test average, Steve earned a 96 percent on his ?rst math test, ...

Steve earned a 96 percent on his ?rst math test, a 74% on his second test, and an 85 percent on his third test. What is his test average? Add the test grades (96 + 74 + 85 = 25

Optimization, Optimization is required in situations that frequentl...

Optimization is required in situations that frequently arise in finance and other areas. Organizations would like to maximize their profits or minimize thei

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd