Integration by parts -integration techniques, Mathematics

Assignment Help:

Integration by Parts -Integration Techniques

Let's start off along with this section with a couple of integrals that we should previously be able to do to get us started. Firstly let's take a look at the following.

∫ ex dx = ex + c

Thus, that was simple enough.  Now, let's take a look at,

∫ xex2 dx

To do this integral we'll make use of the following substitution.

U = x2   du=2xdx => xdx = ½ du

∫ xex2 dx = ½ ∫ eu du ½ eu + c=1/2 ex2 + c

Once Again, simple enough to do offer you remember how to do substitutions.  By the way ensure that you can do these types of substitutions quickly and easily.  From this point on we are going to be doing these types of substitutions in our head.  If you have to prevent and write these out with each problem you will find out that it will take you considerably longer to do these problems.

Now, let's look at the integral that we really wish to do.

∫ xe6x dx

If we just had an x by itself or e6x by itself we could do the integral easily.  Although, we don't have them by themselves, they are in place of multiplied together.

There is no substitution that we can use on this integral that will allow us to do the integral.  So, at this point we don't have the knowledge to do this integral.

To do this integral we will require to make use of integration by parts so let's derive the integration by parts formula. We'll begin with the product rule.

(f g)′ = f'g + f g′

Here, integrate both sides of this.

∫ (f g)′ dx = ∫ f ′ g + f g′ dx

The left side is very easy to integrate and we'll divide the right side of the integral.

Fg = ∫ f' g dx + ∫ fg'dx

Note: Technically we should comprise had a constant of integration show up on the left side later than doing the integration. We can drop it at this point as other constants of integration will be showing up down the road and they would just end up absorbing this one.

At last, rewrite the formula as follows and we arrive at the integration by parts formula.

∫ f g′ dx = fg - ∫ f ′ g dx

Though, this is not the easy formula to use.  Thus, let's do a couple of substitutions.

u = f (x)

v = g (x)

du = f ′ (x) dx

dv = g ′ (x) dx

Both of these formulas are just the standard Calc I substitutions which hopefully you are used to by now. Don't get excited by the fact that we are by using 2 substitutions here. They will work similar way.

By using these substitutions provides us the formula that most people think of as the integration by parts formula.

∫ u dv = uv - ∫ v du

To employ this formula we will require identifying u and dv, calculating du and v and then using the formula. Note also that computing v is very easy.  All we require to do is integrate dv.

v = ∫ dv

So, let's take a look at the integral above that we specified we wanted to do.


Related Discussions:- Integration by parts -integration techniques

#mathematics induction, how many numbers must be selected from the set A={1...

how many numbers must be selected from the set A={1, 3, 5, 7, 9, 11, 13, 15}to guarantee that at least one pair of these numbers add up to16? Explain and justify your answer

Perimeter, what is the perimeter of a rhombus

what is the perimeter of a rhombus

Describe real numbers, Q. Describe Real numbers? Ans. There are a ...

Q. Describe Real numbers? Ans. There are a few different ways to describe real numbers. Without going into any of the very technical definitions used by mathematicians, I'

Game theory, Game Theory It is used to find out the optimum strategy in...

Game Theory It is used to find out the optimum strategy in a competitive condition,While two or more competitors are engaged in making decisions, this may occupy conflict of in

What was the dow at the end of the day after the 2% drop, The Dow Jones Ind...

The Dow Jones Industrial Average fell 2% presently. The Dow began the day at 8,800. What was the Dow at the end of the day after the 2% drop? The Dow lost 2%, so it is worth 9

Harmonic mean-arthmetic geometric progression, Harmonic mean It is a m...

Harmonic mean It is a measure of central tendency which is utilized to determine the average increase rates for natural economies. This is defined like the reciprocal of the a

How much did sally earn if she worked 48 hours, Sally gets paid x dollars p...

Sally gets paid x dollars per hour for a 40-hour work week and y dollars for every hour she works over 40 hours. How much did Sally earn if she worked 48 hours? Since she worke

Find the volume of a cylinder of radius r, Find the volume of a cylinder of...

Find the volume of a cylinder of radius r and height h. Solution : Here, as we mentioned before starting this illustration we actually don't require using an integral to get t

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd