Integration, Mathematics

Assignment Help:

Integration

We have, so far, seen that differential calculus measures the rate of change of functions. Differentiation is the process of finding the derivative (rate of change) of a function F(x) and is denoted by   F'(x)  Often, we may know the rate of change,  F'(x) of a function F(x) which is unknown to us. In such situations we would like to find out the original function F(x) from the derivative,   F'(x).  Reversing the process of differentiation and finding out the original function from the derivative is called integration. The original function, F(x) is called the integral.

Let f(x) = F'(x)  The integral of f(x) is mathematically expressed as

451_integration.png

= F(x) + c

The left hand side of the equation is read as "the indefinite integral of f(x) with respect to x. The symbol   2116_integration1.png  is the integral sign, f(x) is the integrand and 'c' is an arbitrary constant. The arbitrary constant 'c' is added because of the following reason:

If  d/dx {F(x)} = f(x) then we can also write that  d/dx {F(x) + c} = f(x) where 'c' is an arbitrary constant, because the derivative of any constant is zero.


Related Discussions:- Integration

Find the sides of the two squares, The sum of areas of two squares is 468m ...

The sum of areas of two squares is 468m 2  If the difference of their perimeters is 24cm, find the sides of the two squares. Ans:    Let the side of the larger square be x .

Prove the parallelogram circumscribing a circle is rhombus, Prove that the ...

Prove that the parallelogram circumscribing a circle is rhombus. Ans   Given : ABCD is a parallelogram circumscribing a circle. To prove : - ABCD is a rhombus or AB

Completely factored polynomial, Factoring polynomials Factoring polynom...

Factoring polynomials Factoring polynomials is done in pretty much the similar manner.  We determine all of the terms which were multiplied together to obtain the given polynom

Arc length with polar coordinates, Arc Length with Polar Coordinates H...

Arc Length with Polar Coordinates Here we need to move into the applications of integrals and how we do them in terms of polar coordinates.  In this part we will look at the a

Parametric equations and curves - polar coordinates, Parametric Equations a...

Parametric Equations and Curves Till to this point we have looked almost completely at functions in the form y = f (x) or x = h (y) and approximately all of the formulas that w

Differential equations, Verify Liouville''''s formula for y "-y" - y'''' + ...

Verify Liouville''''s formula for y "-y" - y'''' + y = 0 in (0, 1) ?

Partial Differential Equation, Determine the minimum capacity C of a Capaci...

Determine the minimum capacity C of a Capacitor given that: C =(ax/(x-a))+(xy/(y-b))+(yb/(b-y)) given that "a" and "b" are fixed values and "x" and "y" vary independently such th

Binomial mathematical properties, Binomial Mathematical Properties 1. ...

Binomial Mathematical Properties 1. The expected or mean value = n × p = np Whereas; n = Sample Size p = Probability of success 2. The variance = npq Whereas; q =

Heat loss in cylindrical pipe, which physics law is used to describe heat l...

which physics law is used to describe heat loss in cylindrical pipe

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd