Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Integration
We have, so far, seen that differential calculus measures the rate of change of functions. Differentiation is the process of finding the derivative (rate of change) of a function F(x) and is denoted by F'(x) Often, we may know the rate of change, F'(x) of a function F(x) which is unknown to us. In such situations we would like to find out the original function F(x) from the derivative, F'(x). Reversing the process of differentiation and finding out the original function from the derivative is called integration. The original function, F(x) is called the integral.
The left hand side of the equation is read as "the indefinite integral of f(x) with respect to x. The symbol is the integral sign, f(x) is the integrand and 'c' is an arbitrary constant. The arbitrary constant 'c' is added because of the following reason:
If d/dx {F(x)} = f(x) then we can also write that d/dx {F(x) + c} = f(x) where 'c' is an arbitrary constant, because the derivative of any constant is zero.
Mike sells on the average 15 newspapers per week (Monday – Friday). Find the probability that 2.1 In a given week he will sell all the newspapers [7] 2.2 In a given day he will sel
prove that 0!=1
In a two dimensional case, the form of the linear function can be obtained if we know the co-ordinates of two points on the straight line. Suppose x' and x" are two
what is 0.875 of 2282?
what is the nearest ten thousand of 92,892?
Equations of Lines In this part we need to take a view at the equation of a line in R 3 . As we saw in the earlier section the equation y = mx+b does not explain a line in R
Scalar Equation of Plane A little more helpful form of the equations is as follows. Begin with the first form of the vector equation and write a vector for the difference. {
what is the diameter of a circle
1. (a) Give an example of a function, f(x), that has an inflection point at (1, 4). (b) Give an example of a function, g(x), that has a local maximum at ( -3, 3) and a local min
GENERAL RULE A general rule is to subtract the probabilities with an even number of components inside the parentheses and add those with an odd number of components (one or th
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd