Integer exponents, Mathematics

Assignment Help:

We will begin this chapter by looking at integer exponents.  Actually, initially we will suppose that the exponents are +ve as well. We will look at zero & negative exponents in a bit.

Let's firstly recall the definition of exponentiation along with positive integer exponents.  If a is any number and n is a +ve integer then,

2040_Integer Exponents.png

Thus, for example,

                                                 35=3.3.3.3.3 = 243

We have to also employ this opportunity to remind ourselves regarding parenthesis and conventions which we have in regards to exponentiation & parenthesis. It will be specifically important while dealing with negative numbers.  Assume the following two cases.

                       (-2)4m                 and            -24

These will contain different values once we appraise them.  While performing exponentiation keep in mind that it is only the quantity which is instantly to the left of the exponent which gets the power.

In the initial case there is a parenthesis instantly to the left so this means that everything within the parenthesis gets the power. Thus, in this case we get,

                                       (-2)4 = ( -2) (-2) ( -2) ( -2) = 16

In the second case though, the 2 is instantly to the left of the exponent and thus it is only the 2 that gets the power. The minus sign will stay out in front & will NOT get the power.  In this case we have the following,

                            -24 = - (24 ) = - (2 ⋅ 2 ⋅ 2 ⋅ 2) = - (16) = -16

We put in some added parenthesis to help in illustrate this case. Generally they aren't involved and we would write instead,

                                                         -24  = -2 ⋅ 2 ⋅ 2 ⋅ 2 = -16

The instance of this discussion is to ensure that you pay attention to parenthesis. They are significant and avoiding parenthesis or putting in a set of parenthesis where they don't associate can totally change the answer to a problem.  Be careful.  Also, this warning regarding parenthesis is not just intended for exponents. We will have to be careful with parenthesis during this course.

Now, let's take care of zero exponents & negative integer exponents. In the particular case of zero exponents we have,

                                                                   a0 = 1        provided a ≠ 0

Notice down that it is needed that a not be zero. It is important since 00 is not defined.  Here is a rapid example of this property.

                                                 (-1268)0 = 1

We contain the following definition for -ve exponents.  If a is any non-zero number & n is a +ve integer (yes, positive) then,

                                                  a- n  =  1 /an

Can you see why we needed that a not be zero? Keep in mind that division by zero is not described and if we had let a to be zero we would have gotten division by zero.  Here are a couple of rapid examples for this definition,

5-2  = 1 /52 =  1/25                                             ( -4)-3  = 1/(-4)3 = 1/-64 =-(1/64)

Here are some main properties of integer exponents. Accompanying each of property will be a rapid example to show its use.  We shall be looking at more complex examples after the properties.


Related Discussions:- Integer exponents

Find the cost price of the toy, A dealer sells a toy for Rs.24 and gains as...

A dealer sells a toy for Rs.24 and gains as much percent as the cost price of the toy. Find the cost price of the toy. Ans:    Let the C.P be x ∴Gain = x % ⇒ Gain = x

Positive exponents, Simplify following and write the answers with only posi...

Simplify following and write the answers with only positive exponents.   (-10 z 2 y -4 ) 2 ( z 3 y ) -5 Solution    (-10 z 2 y -4 ) 2 ( z 3 y ) -5

Integration, Integration of square root of sin

Integration of square root of sin

Using pythagorean theorem to determine z, Two cars begin 500 miles apart.  ...

Two cars begin 500 miles apart.  Car A is into the west of Car B and begin driving to the east (that means towards Car B) at 35 mph & at the similar time Car B begin driving south

Least common denominator using primes, Least Common Denominator Using Prime...

Least Common Denominator Using Primes: A prime number is a whole number (integer) whose only factors are itself and one. So the first prime numbers are given as follows: 1,

Explain linear equations, Explain Linear Equations ? Set of ordered pai...

Explain Linear Equations ? Set of ordered pairs of numbers A set is an undefined term and we describe it as a "well defined" collection. We use the symbol "{ }" to denote "a se

Geometry, finding missing values from given triangle diagra m..

finding missing values from given triangle diagra m..

Compute the volume and surface area of a right circular cone, Compute the v...

Compute the volume and surface area of a right circular cone: Compute the volume and surface area of a right circular cone along with r =  3", h = 4", and l = 5".  Be sure to

Simple equations, three times the first of the three consecutive odd intege...

three times the first of the three consecutive odd integers is 3 more than twice the third integer. find the third integer.

Rental car agency has 50 cars, Rental car agency has 50 cars. Rental rate i...

Rental car agency has 50 cars. Rental rate in winter is 60%. What is probability that in give winter month the rental rate is fewer than 35 cars rented? Use normal distribution to

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd