Integer exponents, Mathematics

Assignment Help:

We will begin this chapter by looking at integer exponents.  Actually, initially we will suppose that the exponents are +ve as well. We will look at zero & negative exponents in a bit.

Let's firstly recall the definition of exponentiation along with positive integer exponents.  If a is any number and n is a +ve integer then,

2040_Integer Exponents.png

Thus, for example,

                                                 35=3.3.3.3.3 = 243

We have to also employ this opportunity to remind ourselves regarding parenthesis and conventions which we have in regards to exponentiation & parenthesis. It will be specifically important while dealing with negative numbers.  Assume the following two cases.

                       (-2)4m                 and            -24

These will contain different values once we appraise them.  While performing exponentiation keep in mind that it is only the quantity which is instantly to the left of the exponent which gets the power.

In the initial case there is a parenthesis instantly to the left so this means that everything within the parenthesis gets the power. Thus, in this case we get,

                                       (-2)4 = ( -2) (-2) ( -2) ( -2) = 16

In the second case though, the 2 is instantly to the left of the exponent and thus it is only the 2 that gets the power. The minus sign will stay out in front & will NOT get the power.  In this case we have the following,

                            -24 = - (24 ) = - (2 ⋅ 2 ⋅ 2 ⋅ 2) = - (16) = -16

We put in some added parenthesis to help in illustrate this case. Generally they aren't involved and we would write instead,

                                                         -24  = -2 ⋅ 2 ⋅ 2 ⋅ 2 = -16

The instance of this discussion is to ensure that you pay attention to parenthesis. They are significant and avoiding parenthesis or putting in a set of parenthesis where they don't associate can totally change the answer to a problem.  Be careful.  Also, this warning regarding parenthesis is not just intended for exponents. We will have to be careful with parenthesis during this course.

Now, let's take care of zero exponents & negative integer exponents. In the particular case of zero exponents we have,

                                                                   a0 = 1        provided a ≠ 0

Notice down that it is needed that a not be zero. It is important since 00 is not defined.  Here is a rapid example of this property.

                                                 (-1268)0 = 1

We contain the following definition for -ve exponents.  If a is any non-zero number & n is a +ve integer (yes, positive) then,

                                                  a- n  =  1 /an

Can you see why we needed that a not be zero? Keep in mind that division by zero is not described and if we had let a to be zero we would have gotten division by zero.  Here are a couple of rapid examples for this definition,

5-2  = 1 /52 =  1/25                                             ( -4)-3  = 1/(-4)3 = 1/-64 =-(1/64)

Here are some main properties of integer exponents. Accompanying each of property will be a rapid example to show its use.  We shall be looking at more complex examples after the properties.


Related Discussions:- Integer exponents

Least common denominator using primes, Least Common Denominator Using Prime...

Least Common Denominator Using Primes: A prime number is a whole number (integer) whose only factors are itself and one. So the first prime numbers are given as follows: 1,

Compound and simple interest, Your grandparents gave you a gift of R2 000 o...

Your grandparents gave you a gift of R2 000 on your 16th birth day. You want to invest the money in an account over four years. You have an option of investing the R2 000 at 8% per

Graphical understanding of derivatives, Graphical Understanding of Derivati...

Graphical Understanding of Derivatives: A ladder 26 feet long is leaning against a wall. The ladder begins to move such that the bottom end moves away from the wall at a const

Solve 5x tan (8x ) =3x trig function, Solve 5x tan (8x ) =3x . Solution...

Solve 5x tan (8x ) =3x . Solution : Firstly, before we even begin solving we have to make one thing clear.  DO NOT CANCEL AN x FROM BOTH SIDES!!! Whereas this may appear like

Basic computation formulas of differentiation, Basic "computation" formulas...

Basic "computation" formulas : Next, let's take a quick look at some basic "computation" formulas that will let us to actually compute some derivatives. Formulas 1)   If f

What is the value of the lesser integer, The sum of three times a greater i...

The sum of three times a greater integer and 5 times a lesser integer is 9. Three less than the greater equivalent the lesser. What is the value of the lesser integer? Let x =

Word problem, adison earned $25 mowing her neighbor''s lawn. then she loane...

adison earned $25 mowing her neighbor''s lawn. then she loaned her friend $18, and got $50 from her grandmother for her birthday. she now has $86. how much money did adison have to

Stages of multiplication from the beginning, What is our aim when teaching ...

What is our aim when teaching children multiplication? Firstly they should be able to judge which situations they need to multiply in, and the numbers that are to be multiplied sec

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd