Integer exponents, Mathematics

Assignment Help:

We will begin this chapter by looking at integer exponents.  Actually, initially we will suppose that the exponents are +ve as well. We will look at zero & negative exponents in a bit.

Let's firstly recall the definition of exponentiation along with positive integer exponents.  If a is any number and n is a +ve integer then,

2040_Integer Exponents.png

Thus, for example,

                                                 35=3.3.3.3.3 = 243

We have to also employ this opportunity to remind ourselves regarding parenthesis and conventions which we have in regards to exponentiation & parenthesis. It will be specifically important while dealing with negative numbers.  Assume the following two cases.

                       (-2)4m                 and            -24

These will contain different values once we appraise them.  While performing exponentiation keep in mind that it is only the quantity which is instantly to the left of the exponent which gets the power.

In the initial case there is a parenthesis instantly to the left so this means that everything within the parenthesis gets the power. Thus, in this case we get,

                                       (-2)4 = ( -2) (-2) ( -2) ( -2) = 16

In the second case though, the 2 is instantly to the left of the exponent and thus it is only the 2 that gets the power. The minus sign will stay out in front & will NOT get the power.  In this case we have the following,

                            -24 = - (24 ) = - (2 ⋅ 2 ⋅ 2 ⋅ 2) = - (16) = -16

We put in some added parenthesis to help in illustrate this case. Generally they aren't involved and we would write instead,

                                                         -24  = -2 ⋅ 2 ⋅ 2 ⋅ 2 = -16

The instance of this discussion is to ensure that you pay attention to parenthesis. They are significant and avoiding parenthesis or putting in a set of parenthesis where they don't associate can totally change the answer to a problem.  Be careful.  Also, this warning regarding parenthesis is not just intended for exponents. We will have to be careful with parenthesis during this course.

Now, let's take care of zero exponents & negative integer exponents. In the particular case of zero exponents we have,

                                                                   a0 = 1        provided a ≠ 0

Notice down that it is needed that a not be zero. It is important since 00 is not defined.  Here is a rapid example of this property.

                                                 (-1268)0 = 1

We contain the following definition for -ve exponents.  If a is any non-zero number & n is a +ve integer (yes, positive) then,

                                                  a- n  =  1 /an

Can you see why we needed that a not be zero? Keep in mind that division by zero is not described and if we had let a to be zero we would have gotten division by zero.  Here are a couple of rapid examples for this definition,

5-2  = 1 /52 =  1/25                                             ( -4)-3  = 1/(-4)3 = 1/-64 =-(1/64)

Here are some main properties of integer exponents. Accompanying each of property will be a rapid example to show its use.  We shall be looking at more complex examples after the properties.


Related Discussions:- Integer exponents

Write down the equation of the line, Write down the equation of the line wh...

Write down the equation of the line which passes through the points (2, -1, 3) and (1, 4, -3).  Write all three forms of the equation of the line. Solution To do the above

Travel time, you are driving on a freeway to a tour that is 500 kilometers ...

you are driving on a freeway to a tour that is 500 kilometers from your home. after 30 minutes , you pass a freeway exit that you know is 50 kilometer from your home. assuming that

rational nmber, every rational nmber is expressible either as a_________or...

every rational nmber is expressible either as a_________or as a____________decimal.

Linear equation, tens digit of a 2-digit number is twice its unit digit. If...

tens digit of a 2-digit number is twice its unit digit. If the sum of the digit is 12, find the number.

Expect mean, Your factory has a machine for drilling holes in a sheet metal...

Your factory has a machine for drilling holes in a sheet metal part.  The mean diameter of the hole is 10mm with a standard deviation of 0.1mm. What is the probability that any

Simple derivatives, Simple derivatives Example   Differentiate followin...

Simple derivatives Example   Differentiate following.  (5x 3   - 7 x + 1) 5 ,[ f ( x )] 5 ,[ y ( x )] 5 Solution: Here , with the first function we're being asked to

Evaluate the volume of a basketball along with the volume, Dawn wants to ev...

Dawn wants to evaluate the volume of a basketball along with the volume of a tennis ball. Which formula will she use? The volume of a sphere is 4/3 times π times the radius cub

Derivatives of inverse trig function, Derivatives of Inverse Trig Functions...

Derivatives of Inverse Trig Functions : Now, we will look at the derivatives of the inverse trig functions. To derive the derivatives of inverse trig functions we'll required t

Iceviga, Jess had a book with 100 pages to read she only read 10 how many p...

Jess had a book with 100 pages to read she only read 10 how many pages does she have to read?

Holistic Marketing, Do you believe the holistic marketing concept is the mo...

Do you believe the holistic marketing concept is the most effective way to conduct marketing activities? Why? (Why not?)

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd