Integer exponents, Mathematics

Assignment Help:

We will begin this chapter by looking at integer exponents.  Actually, initially we will suppose that the exponents are +ve as well. We will look at zero & negative exponents in a bit.

Let's firstly recall the definition of exponentiation along with positive integer exponents.  If a is any number and n is a +ve integer then,

2040_Integer Exponents.png

Thus, for example,

                                                 35=3.3.3.3.3 = 243

We have to also employ this opportunity to remind ourselves regarding parenthesis and conventions which we have in regards to exponentiation & parenthesis. It will be specifically important while dealing with negative numbers.  Assume the following two cases.

                       (-2)4m                 and            -24

These will contain different values once we appraise them.  While performing exponentiation keep in mind that it is only the quantity which is instantly to the left of the exponent which gets the power.

In the initial case there is a parenthesis instantly to the left so this means that everything within the parenthesis gets the power. Thus, in this case we get,

                                       (-2)4 = ( -2) (-2) ( -2) ( -2) = 16

In the second case though, the 2 is instantly to the left of the exponent and thus it is only the 2 that gets the power. The minus sign will stay out in front & will NOT get the power.  In this case we have the following,

                            -24 = - (24 ) = - (2 ⋅ 2 ⋅ 2 ⋅ 2) = - (16) = -16

We put in some added parenthesis to help in illustrate this case. Generally they aren't involved and we would write instead,

                                                         -24  = -2 ⋅ 2 ⋅ 2 ⋅ 2 = -16

The instance of this discussion is to ensure that you pay attention to parenthesis. They are significant and avoiding parenthesis or putting in a set of parenthesis where they don't associate can totally change the answer to a problem.  Be careful.  Also, this warning regarding parenthesis is not just intended for exponents. We will have to be careful with parenthesis during this course.

Now, let's take care of zero exponents & negative integer exponents. In the particular case of zero exponents we have,

                                                                   a0 = 1        provided a ≠ 0

Notice down that it is needed that a not be zero. It is important since 00 is not defined.  Here is a rapid example of this property.

                                                 (-1268)0 = 1

We contain the following definition for -ve exponents.  If a is any non-zero number & n is a +ve integer (yes, positive) then,

                                                  a- n  =  1 /an

Can you see why we needed that a not be zero? Keep in mind that division by zero is not described and if we had let a to be zero we would have gotten division by zero.  Here are a couple of rapid examples for this definition,

5-2  = 1 /52 =  1/25                                             ( -4)-3  = 1/(-4)3 = 1/-64 =-(1/64)

Here are some main properties of integer exponents. Accompanying each of property will be a rapid example to show its use.  We shall be looking at more complex examples after the properties.


Related Discussions:- Integer exponents

Determine how many square centimeters, Determine how many square centimeter...

Determine how many square centimeters of paper are needed to make a label on a cylindrical can 45 cm tall with a circular base having diameter of 20 cm. Leave answer in terms of π.

The mean value theorem with proof, The Mean Value Theorem  Assume f(x)...

The Mean Value Theorem  Assume f(x) is a function that satisfies both of the subsequent. 1.   f(x) is continuous on the closed interval [a,b]. 2.   f(x) is differentiabl

Descriptive statistics, Descriptive Statistics Statistics Definit...

Descriptive Statistics Statistics Definition of Statistics: it viewed as a subject is a process of tabulating, collecting and analyzing numerical data upon which importan

Example of addition of signed numbers, Example of addition of Signed Number...

Example of addition of Signed Numbers: Example: (-2) + 3 + 4 = 0 - 2 + 3 + 4 Solution: Thus: (-2) + 3 + 4 = 5  Example: 10 + (-5) + 8 + (-7)

Seqence and seies, If the M-th term of an Ap is n andn-th term M.find the p...

If the M-th term of an Ap is n andn-th term M.find the p-th term

Modeling with first order differential equations, We here move to one of th...

We here move to one of the major applications of differential equations both into this class and in general. Modeling is the process of writing a differential equation to explain a

Horizontal asymptote, The horizontal asymptote of (16x+7)(x^2-5)/(x^2+36).

The horizontal asymptote of (16x+7)(x^2-5)/(x^2+36).

Determine the head loss, A 3 km pipe starts from point A end at point B ...

A 3 km pipe starts from point A end at point B Population = 3000 people Q = 300 L/day/person Roughness = cast ion pipe Length of the pipe = 3km Case 1 From A to B

Product rule, Product Rule If the two functions f(x) & g(x) are differe...

Product Rule If the two functions f(x) & g(x) are differentiable (i.e. the derivative exist) then the product is differentiable and,

Determine the equation of plane - three dimensional space, Determine the eq...

Determine the equation of the plane that consists of the points P = (1, -2, 0), Q = (3, 1, 4) and R = (0, -1, 2). Solution To write down the equation of plane there is a re

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd