Integer exponents, Mathematics

Assignment Help:

We will begin this chapter by looking at integer exponents.  Actually, initially we will suppose that the exponents are +ve as well. We will look at zero & negative exponents in a bit.

Let's firstly recall the definition of exponentiation along with positive integer exponents.  If a is any number and n is a +ve integer then,

2040_Integer Exponents.png

Thus, for example,

                                                 35=3.3.3.3.3 = 243

We have to also employ this opportunity to remind ourselves regarding parenthesis and conventions which we have in regards to exponentiation & parenthesis. It will be specifically important while dealing with negative numbers.  Assume the following two cases.

                       (-2)4m                 and            -24

These will contain different values once we appraise them.  While performing exponentiation keep in mind that it is only the quantity which is instantly to the left of the exponent which gets the power.

In the initial case there is a parenthesis instantly to the left so this means that everything within the parenthesis gets the power. Thus, in this case we get,

                                       (-2)4 = ( -2) (-2) ( -2) ( -2) = 16

In the second case though, the 2 is instantly to the left of the exponent and thus it is only the 2 that gets the power. The minus sign will stay out in front & will NOT get the power.  In this case we have the following,

                            -24 = - (24 ) = - (2 ⋅ 2 ⋅ 2 ⋅ 2) = - (16) = -16

We put in some added parenthesis to help in illustrate this case. Generally they aren't involved and we would write instead,

                                                         -24  = -2 ⋅ 2 ⋅ 2 ⋅ 2 = -16

The instance of this discussion is to ensure that you pay attention to parenthesis. They are significant and avoiding parenthesis or putting in a set of parenthesis where they don't associate can totally change the answer to a problem.  Be careful.  Also, this warning regarding parenthesis is not just intended for exponents. We will have to be careful with parenthesis during this course.

Now, let's take care of zero exponents & negative integer exponents. In the particular case of zero exponents we have,

                                                                   a0 = 1        provided a ≠ 0

Notice down that it is needed that a not be zero. It is important since 00 is not defined.  Here is a rapid example of this property.

                                                 (-1268)0 = 1

We contain the following definition for -ve exponents.  If a is any non-zero number & n is a +ve integer (yes, positive) then,

                                                  a- n  =  1 /an

Can you see why we needed that a not be zero? Keep in mind that division by zero is not described and if we had let a to be zero we would have gotten division by zero.  Here are a couple of rapid examples for this definition,

5-2  = 1 /52 =  1/25                                             ( -4)-3  = 1/(-4)3 = 1/-64 =-(1/64)

Here are some main properties of integer exponents. Accompanying each of property will be a rapid example to show its use.  We shall be looking at more complex examples after the properties.


Related Discussions:- Integer exponents

Limits at infinity, Limits At Infinity, Part I : In the earlier section w...

Limits At Infinity, Part I : In the earlier section we saw limits which were infinity and now it's time to take a look at limits at infinity.  Through limits at infinity we mean

..compound intrest, tell me about the software of compound intrest?

tell me about the software of compound intrest?

Measurement of the sampling distribution, Caterer determines that 87% of p...

Caterer determines that 87% of people who sampled the food thought it was delicious. A random sample of 144 out of population of 5000 taken. The 144 are asked to sample the food. I

In terms of x what is the area of her garden, Laura has a rectangular garde...

Laura has a rectangular garden whose width is x 3 and whose length is x4. In terms of x, what is the area of her garden? Since the area of a rectangle is A = length times widt

Calculate the time average of kinetic energy of the planet, (1) If the coef...

(1) If the coefficient of friction between a box and the bed of a truck is m , What is the maximum acceleration with which the truck can climb a hill, making an angle q with the ho

Addition of unlike terms, In this case, the first point we have to re...

In this case, the first point we have to remember is that we do not get a single value when we add two or more terms which are unlike in nature. This certainly ob

Explain the algebraic expressions and equations, Explain the Algebraic Expr...

Explain the Algebraic Expressions and Equations? Writing a math problem algebraically means that you are using numbers and variables to represent relationships. "Three inche

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd