Initial value problem, Mathematics

Assignment Help:

An IVP or Initial Value Problem is a differential equation with an appropriate number of initial conditions.

Illustration 3: The subsequent is an IVP.

4x2 y'' + 12y' + 3y = 0;      y(4) = 1/8;       y'4(-3/64);

Illustration 4: Here's the other IVP.

2ty' + 4y = 3

y(1) = -4.

As I noticed previously the number of initial conditions needed, such will depend on the order of the differential equation.


Related Discussions:- Initial value problem

Give an equations with the variable on both sides, Give an Equations with t...

Give an Equations with the variable on both sides ? Many equations that you encounter will have variables on both sides. Some of these equations will even contain grouping sy

Math, a business is owned by three people.the first owns 1/12 of the busine...

a business is owned by three people.the first owns 1/12 of the business and the second owns 1/6 of the business. what fractional part of the business is owned by the third person

Find the initial number of balls, Balls are arranged in rows to form an equ...

Balls are arranged in rows to form an equilateral triangle .The first row consists of one ball, the second two balls and so on.   If 669 more balls are added, then all the balls ca

Example of exponential smoothing, Example of Exponential Smoothing ...

Example of Exponential Smoothing By using the previous example and smoothing constant 0.3 generate monthly forecasts Months Sales Forecast

Theorem, Theorem, from Definition of Derivative  If f(x) is differenti...

Theorem, from Definition of Derivative  If f(x) is differentiable at x = a then f(x) is continuous at x =a. Proof : Since f(x) is differentiable at x = a we know, f'(a

Evaluate the mean of temperatures, Evaluate the mean of temperatures: ...

Evaluate the mean of temperatures: Example: Given the subsequent temperature readings, 573, 573, 574, 574, 574, 574, 575, 575, 575, 575, 575, 576, 576, 576, 578 So

Calculus!, x+2y^2=63 and 4x+y^2=0; Find the area of the regions enclosed by...

x+2y^2=63 and 4x+y^2=0; Find the area of the regions enclosed by the lines and curves.

Sin[cot-1{cos(tan-1x)}], sin (cot -1 {cos (tan -1 x)}) tan -1 x = A  ...

sin (cot -1 {cos (tan -1 x)}) tan -1 x = A  => tan A =x sec A = √(1+x 2 ) ==>  cos A = 1/√(1+x 2 )    so   A =  cos -1 (1/√(1+x 2 )) sin (cot -1 {cos (tan -1 x)}) = s

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd