Induction motor, Electrical Engineering

Assignment Help:

A very widely used alternative form of synchronous motor is the 'induction motor'. This has the advantage that it does not require an auxiliary motor to run the rotor up to synchronous speed.

895_induction motor.png

The rotor consists of stout copper (or aluminium) conductors arranged in the form of a cylindrical cage (commonly known as a 'squirrel cage' rotor). These are laid in slots in a soft iron core that focuses the magnetic flux produced by the stator across the bars of the cage and all the bars are electrically connected together at each end by copper (or aluminium) rings.

Three stator windings arranged at 120° to each other around the rotor are energised by the three phases of an ac supply and this creates a magnetic field that rotates at the frequency of the supply.

1943_induction motor1.png

With the rotor stationary, the rotating magnetic field induces an emf in the cage that in turn drives a current through its conductors (an 'eddy' current). This current reacts against the magnetic field to produce a torque that causes the rotor to turn in the direction of the rotating magnetic field.

If the rotor were to rotate at the same speed as the rotating magnetic field, then it would not experience any  change in the magnetic field and no emf would be induced in the rotor.

No current (and therefore no torque either) would then be induced in the rotor.

Some torque will always be needed to overcome mechanical losses (friction, air resistance etc) in addition to any mechanical load applied to the motor, so in practice the rotor always turns more slowly than the rotating magnetic field.

The fractional difference in speed between the rotational speed of the magnetic field (the synchronous speed) and that of the rotor is called the 'slip'.

Slip = Synchronous speed - Rotor speed

                Synchronous speed

NOTE:

(1)  The larger the torque applied to the motor, the greater the slip required to produce the torque needed.

(2)  Because of the slip, the frequency of the induced currents in the rotor is  less than that of the applied stator voltage. The induced voltage is proportional to the rate of change of the magnetic field strength as 'seen' by the rotating armature.

(3)  If the slip is small, the frequency of the currents flowing in the rotor is low and so the effect of any inductance of the rotor is negligible. (Z=j  L). In this case, only the resistance of the rotor limits the current in the rotor (and hence the torque produced by the motor).

So: Torque  =    K.S/R

where K is a constant for a given machine.

Advantages:  no brushes or slip rings are required - relatively easy and cheap to make. Reliable (no sliding electrical contacts). Smooth torque output.

Disadvantages:  operates at one speed (determined by the frequency of the three-phase ac supply used). Needs electronic controllers to produce variable frequency supplies if required to operate at variable speeds.

Normally needs three-phase supplies (it is possible to use single phase supplies from which other phases can be derived by phase-shifting circuits).

Applications: aircraft fuel pumps, (that are immersed in fuel to aid cooling), fans, conveyer belt drives, pumps etc.


Related Discussions:- Induction motor

Electric machinery fundamentals, Ask qu1. If the resistor Radj is adjusted ...

Ask qu1. If the resistor Radj is adjusted to 175O what is the rotational speed of the motor at no-load conditions? 2. Assuming no armature reaction, what is the speed of the motor

Calculate the fraction of particles - top plate, Consider a colloidal suspe...

Consider a colloidal suspension of latex particles confined between two plates. The plates are charged, so there is an electric potential difference V between them (as shown). The

Write explanatory notes on hard disk drive controller, Write explanatory no...

Write explanatory notes on Hard disk drive controller. Hard disk drive controller: It converts instructions from software running upon the computer to the electrical signals

Illustrate inductance with example, Q. Illustrate Inductance with example? ...

Q. Illustrate Inductance with example? An ideal inductor is also an energy-storage circuit element (with no loss associated with it) like a capacitor, but representing the magn

Kirchoff''s current law, Kirchoff's Current Law The total current ent...

Kirchoff's Current Law The total current entering a node in a circuit is equal to the total current leaving that node. A Node is a junction between two or more components.

Power, why do we use commutator?

why do we use commutator?

#DSP ., #The requirement is as follows- There is a signal which is in the r...

#The requirement is as follows- There is a signal which is in the range of 0 to 5Hz. This signal frequency composition is to determined. The resolution of the determination is 1Hz.

Compare procedure and macro, Compare Procedure & Macro  Accessed by CAL...

Compare Procedure & Macro  Accessed by CALL & RET instruction Accessed during assembly with name given during program implementation to macro when defined Machine code for inst

Show power and power factor in ac circuits, Q. Show Power and Power Factor ...

Q. Show Power and Power Factor in ac Circuits? Power is the rate of change of energy with respect to time. The unit of power is a watt (W), which is a joule per second (J/s). T

Formation of energy bands in solids, Describe in brief the Formation of ene...

Describe in brief the Formation of energy bands in solids and hence explain how it helps to classify the solid in to conductors and insulators. Energy Bands in Solids Acco

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd