Induction motor, Electrical Engineering

Assignment Help:

A very widely used alternative form of synchronous motor is the 'induction motor'. This has the advantage that it does not require an auxiliary motor to run the rotor up to synchronous speed.

895_induction motor.png

The rotor consists of stout copper (or aluminium) conductors arranged in the form of a cylindrical cage (commonly known as a 'squirrel cage' rotor). These are laid in slots in a soft iron core that focuses the magnetic flux produced by the stator across the bars of the cage and all the bars are electrically connected together at each end by copper (or aluminium) rings.

Three stator windings arranged at 120° to each other around the rotor are energised by the three phases of an ac supply and this creates a magnetic field that rotates at the frequency of the supply.

1943_induction motor1.png

With the rotor stationary, the rotating magnetic field induces an emf in the cage that in turn drives a current through its conductors (an 'eddy' current). This current reacts against the magnetic field to produce a torque that causes the rotor to turn in the direction of the rotating magnetic field.

If the rotor were to rotate at the same speed as the rotating magnetic field, then it would not experience any  change in the magnetic field and no emf would be induced in the rotor.

No current (and therefore no torque either) would then be induced in the rotor.

Some torque will always be needed to overcome mechanical losses (friction, air resistance etc) in addition to any mechanical load applied to the motor, so in practice the rotor always turns more slowly than the rotating magnetic field.

The fractional difference in speed between the rotational speed of the magnetic field (the synchronous speed) and that of the rotor is called the 'slip'.

Slip = Synchronous speed - Rotor speed

                Synchronous speed

NOTE:

(1)  The larger the torque applied to the motor, the greater the slip required to produce the torque needed.

(2)  Because of the slip, the frequency of the induced currents in the rotor is  less than that of the applied stator voltage. The induced voltage is proportional to the rate of change of the magnetic field strength as 'seen' by the rotating armature.

(3)  If the slip is small, the frequency of the currents flowing in the rotor is low and so the effect of any inductance of the rotor is negligible. (Z=j  L). In this case, only the resistance of the rotor limits the current in the rotor (and hence the torque produced by the motor).

So: Torque  =    K.S/R

where K is a constant for a given machine.

Advantages:  no brushes or slip rings are required - relatively easy and cheap to make. Reliable (no sliding electrical contacts). Smooth torque output.

Disadvantages:  operates at one speed (determined by the frequency of the three-phase ac supply used). Needs electronic controllers to produce variable frequency supplies if required to operate at variable speeds.

Normally needs three-phase supplies (it is possible to use single phase supplies from which other phases can be derived by phase-shifting circuits).

Applications: aircraft fuel pumps, (that are immersed in fuel to aid cooling), fans, conveyer belt drives, pumps etc.


Related Discussions:- Induction motor

Triac - power semiconductor devices , Triac  As the  name  suggests T...

Triac  As the  name  suggests TRIAC  is advice which  has three  electrodes and works  on AC.  The three terminals of triac are MTI ( Main Terminal ) MT2 ( Main  terminal ) an

Realize the function f by a k map using 0s, Q. Given the following truth ta...

Q. Given the following truth table: (a) Realize the function f by a K map using 0s. (b) Realize the function f by a K map using 1s.

Dc generator, A 20kw 220v shunt generator has armature resistance of 0.07 a...

A 20kw 220v shunt generator has armature resistance of 0.07 and a shunt field resisitance 900 ohm find field loss?

Temperature triggering , Temperature Triggering At high temperature th...

Temperature Triggering At high temperature the leakage current  of junction J 2 increases. This leakage  current is collector  current of tr 1 and Tr 2 . So rise in temperat

Find the nature of the armature voltage, Q. The flux-density distribution p...

Q. The flux-density distribution produced in a two - pole synchronous generator by an acexcited field winding is B(θ, t) = B m sin ω 1 t cos θ Find the nature of the armatur

\, Refer to Figure 100. Assume MKS units. Given: R1= 4, R2=14, R3= 9, I4...

Refer to Figure 100. Assume MKS units. Given: R1= 4, R2=14, R3= 9, I4= 8, I5= 7. Determine: Ieq, Req, and V3.

Industrial Automation, 1. Write the Boolean expression and draw the gate lo...

1. Write the Boolean expression and draw the gate logic diagram and typical PLC ladder logic diagram for a control system wherein a fan is to run only when all of the following con

Power distribution system, Power Distribution System The Distrib...

Power Distribution System The Distribution System contains: - Sub-transmission system in voltage ranges from 33 kV to 220 kV. The energy goes from power subs

Calculate the bandwidth of the new signal, A signal comprises a bandwidth o...

A signal comprises a bandwidth of 1kHz centred around 1kHz.  A sine wave along with a frequency of 1250Hz is added to the signal. The bandwidth of the new signal is: 2250Hz

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd