Induction motor, Electrical Engineering

Assignment Help:

A very widely used alternative form of synchronous motor is the 'induction motor'. This has the advantage that it does not require an auxiliary motor to run the rotor up to synchronous speed.

895_induction motor.png

The rotor consists of stout copper (or aluminium) conductors arranged in the form of a cylindrical cage (commonly known as a 'squirrel cage' rotor). These are laid in slots in a soft iron core that focuses the magnetic flux produced by the stator across the bars of the cage and all the bars are electrically connected together at each end by copper (or aluminium) rings.

Three stator windings arranged at 120° to each other around the rotor are energised by the three phases of an ac supply and this creates a magnetic field that rotates at the frequency of the supply.

1943_induction motor1.png

With the rotor stationary, the rotating magnetic field induces an emf in the cage that in turn drives a current through its conductors (an 'eddy' current). This current reacts against the magnetic field to produce a torque that causes the rotor to turn in the direction of the rotating magnetic field.

If the rotor were to rotate at the same speed as the rotating magnetic field, then it would not experience any  change in the magnetic field and no emf would be induced in the rotor.

No current (and therefore no torque either) would then be induced in the rotor.

Some torque will always be needed to overcome mechanical losses (friction, air resistance etc) in addition to any mechanical load applied to the motor, so in practice the rotor always turns more slowly than the rotating magnetic field.

The fractional difference in speed between the rotational speed of the magnetic field (the synchronous speed) and that of the rotor is called the 'slip'.

Slip = Synchronous speed - Rotor speed

                Synchronous speed

NOTE:

(1)  The larger the torque applied to the motor, the greater the slip required to produce the torque needed.

(2)  Because of the slip, the frequency of the induced currents in the rotor is  less than that of the applied stator voltage. The induced voltage is proportional to the rate of change of the magnetic field strength as 'seen' by the rotating armature.

(3)  If the slip is small, the frequency of the currents flowing in the rotor is low and so the effect of any inductance of the rotor is negligible. (Z=j  L). In this case, only the resistance of the rotor limits the current in the rotor (and hence the torque produced by the motor).

So: Torque  =    K.S/R

where K is a constant for a given machine.

Advantages:  no brushes or slip rings are required - relatively easy and cheap to make. Reliable (no sliding electrical contacts). Smooth torque output.

Disadvantages:  operates at one speed (determined by the frequency of the three-phase ac supply used). Needs electronic controllers to produce variable frequency supplies if required to operate at variable speeds.

Normally needs three-phase supplies (it is possible to use single phase supplies from which other phases can be derived by phase-shifting circuits).

Applications: aircraft fuel pumps, (that are immersed in fuel to aid cooling), fans, conveyer belt drives, pumps etc.


Related Discussions:- Induction motor

Which property of material allows it to drawn out in wires, Property of mat...

Property of material which allows it to be drawn out into wires is (A) Ductility.                                    (B) Solder ability. (C) Super conductivity.

Definition of magnetism, Definition of  Magnetism Magnetism is explai...

Definition of  Magnetism Magnetism is explained as the force produced by charge particles (electrons) of magnet. A magnet is a material that obtained a magnetic field.

Electrical Machine, i have an assignment due for submission within two days...

i have an assignment due for submission within two days. It is all about transformer measurement manually and numerical results using Matlab.Is there anyone can do the job?

Semiconductors, Semiconductors Conductivity in among those of metal...

Semiconductors Conductivity in among those of metals and insulators. Conductivity can be changed over orders of magnitude through changes in temperature, optical excitat

Evaluate parameters of a bjt, Q. The parameters of a BJT are given by α = 0...

Q. The parameters of a BJT are given by α = 0.98, I CBO = 90 nA, and i C = 7.5 mA. Find β, iB, and iE.

Comparison with vacuum tubes, Comparison with vacuum tubes: Prior to t...

Comparison with vacuum tubes: Prior to the growth of transistors, vacuum (electron) tubes (or in the UK (United Kingdom) "thermionic valves" or just "valves") were the major a

Define stability - characteristics of discrete time systems, Define Stabili...

Define Stability - Characteristics of Discrete Time Systems? The LTI system is stable if its impulse response satisfies the condition This condition is satisfie

Explain the working of an npn transistor, Explain the working of an npn tra...

Explain the working of an npn transistor. Working of npn transistor: In an npn transistor is demonstrated in the figure. The emitter base junction is forward biased whereas

Engineering design, following on from the first tma in this module, produce...

following on from the first tma in this module, produce a design report for one design of the product based on one of the scenarios covered on the following pages.

Find the change in energy received by the charge, Q Acharge of 0.1Cpasses t...

Q Acharge of 0.1Cpasses through an electric source of 6 V from its negative to its positive terminals. Find the change in energy received by the charge. Comment onwhether the charg

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd