Induction motor, Electrical Engineering

Assignment Help:

 

This is a synchronous motor that does not require a special start-up auxiliary motor. The  rotor  consists  of  stout  copper  (or aluminium)  conductors  arranged  in  the form of a cylindrical cage (commonly known as a 'squirrel cage' rotor). These are laid in slots in a soft iron core and all the bars are electrically connected up together at each end by copper  (or aluminium) rings. Three stator windings arranged at 120° to each other around the rotor are energised by the three phases of an ac supply and this creates a magnetic field that  rotates at the frequency of the supply.

 

2483_Induction motor.png

With the rotor stationary, the rotating magnetic field induces an emf in the cage that in turn drives a current through its conductors (an 'eddy'  current).This current reacts against the magnetic field to produce a torque that causes the rotor to turn  in   the direction of the  rotating magnetic field. Note that if the rotor were ever able to  'catch up' with the rotating magnetic field, then the conductors of the rotor cage would not then experience any changing magnetic field., no emf would be induced  in  the  rotor  and  therefore  no current (and therefore no torque either) in the rotor. Some torque will always be needed to overcome mechanical losses (friction, air resistance etc). Therefore in practice the rotor always turns more slowly than the rotating magnetic field, how much depending   on the  amount  of torque required  by the  motor to  overcome both the mechanical losses and the mechanical load applied to the motor. The fractional difference in speed is called the 'slip'.


Slip = synchronous speed - rotor speed

             Synchronous speed

 

The larger the torque applied to the motor,the greater the slip required to produce the torque needed. Note that because of the slip, the frequency of the induced currents in the rotor is less than that of the applied stator voltage. (The induced voltage is proportional to the rate of change of the magnetic field strength as ‘seen’ by the rotating armature. Hence if the slip is small, the frequency of the currents flowing in the rotor is low and so the effect of any inductance of the rotor is  negligible. (Z=jωL). In this case, only the resistance of the rotor limits the current in  the rotor (and hence the torque produced by the motor).

Torque    =  K.S/R


where K is a constant for a given machine.Usually R is made very small (hence the stout copper or aluminium rotor cage) to allow a high torque output.

Advantages:  no brushes or slip rings are required – relatively easy and cheap to make. Reliable. Smooth torque output.

Disadvantages
:  operates at one speed (determined by the frequency of the threephase ac supply used). Needs electronic controllers to produce variable frequency supplies if required to operate at variable speeds. Normally needs three-phase supplies (it is possible to use single phase supplies with special designs) Applications: aircraft fuel pumps, (immersed in fuel to aid cooling), fans, conveyer belt drives, pumps etc.

 

 


Related Discussions:- Induction motor

What is effect of temperature on semiconductor conductivity, What is the ef...

What is the effect of temperature on conductivity of semiconductor? Electrical conductivity of semiconductor changes appreciably along with temperature changes. At absolute zer

Show equivalent circuit of a synchronous machine, Equivalent Circuit of a S...

Equivalent Circuit of a Synchronous Machine A review of the material about elementary synchronous machines is very helpful at this stage to recall the principles of operation f

What are flip flop circuits in digital electronics, What are flip flop circ...

What are flip flop circuits in digital electronics? Discuss race around condition in J-K Flip Flop

Its use in civil engineering, applications of electronics device (bjt,mosfe...

applications of electronics device (bjt,mosfets) in civil engineering

What are the different functional units in 8086, Bus Interface Unit and imp...

Bus Interface Unit and implementation unit, are the two dissimilar functional units in 8086.

Calculate the magnitude of fault current, Figure shows an isolated three-ph...

Figure shows an isolated three-phase load supplied from a 33 kV/11 kV substation via a 30 km long three-phase 11 kV overhead line. The overhead line has the following series parame

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd