Index shift - sequences and series, Mathematics

Assignment Help:

Index Shift - Sequences and Series

The main idea behind index shifts is to start a series at a dissimilar value for whatever the reason (and yes, there are legitimate reasons for doing that).

Consider the following series,

992_Index Shift - Sequences and Series 1.png

Assume that for some reason we wanted to start this series at n = 0 , but we did not wish to change the value of the series. The meaning of this is that we can't just change the n = 2 to n = 0 as this would add in two new terms to the series and so change its value.

Carrying out an index shift is a quite simple process to do. We'll start by describing a new index, say i, as follows,

i = n - 2

Here now, when n = 2, we will get i = 0 . Notice as well that if n = ∞ then i = ∞- 2 = ∞ , so only the lower limit will alter here. Next, we can solve this for n to get,

n = i + 2

We can now totally rewrite the series in terms of the index i in place of the index n just by plugging in our equation for n in terms of i.

717_Index Shift - Sequences and Series 2.png

To end the problem out we'll remind that the letter we employed for the index doesn't matter and thus we'll change the final i back into an n to get,

1999_Index Shift - Sequences and Series 3.png

To induce you that these really are similar summation let us write out the first couple of terms for each one of them,

1289_Index Shift - Sequences and Series 4.png

Thus, sure enough the two series do have exactly similar terms.

In fact there is an easier way to do an index shift. The method described above is the technically right way of doing an index shift. Though, notice in the above instance we decreased the initial value of the index by 2 and all the n's in the series terms increased by 2 also. This will all time work in this way.  If we decrease the initial value of the index by a set amount as compared to all the other n's in the series term will increase by similar amount. Similarly, if we increase the initial value of the index by a set amount, after that all the n's in the series term will decrease by similar amount.


Related Discussions:- Index shift - sequences and series

Quadratic equations by completing the square method, Can we solve the Quadr...

Can we solve the Quadratic Equations by completing the square method? if yes explain it.

Diffrentiation, y=f(a^x)   and f(sinx)=lnx find dy/dx? Solution) dy/dx exi...

y=f(a^x)   and f(sinx)=lnx find dy/dx? Solution) dy/dx exist only when 0 1 as the function y = f(a^x) itself does not exist.

Differential equations, Verify Liouville''s formula for y "-y" - y'' + y = ...

Verify Liouville''s formula for y "-y" - y'' + y = 0 in (0, 1) ?

Compound interest, you have RM5O,OOO to invest,and two fund that you''d li...

you have RM5O,OOO to invest,and two fund that you''d like to invest in.The You-Risk-It Fund yields 14% interest.The Extra-Dull Fund yields 6% interest.Besause of college financial-

Find out the area under the parametric curve, Find out the area under the p...

Find out the area under the parametric curve given by the following parametric equations.  x = 6 (θ - sin θ) y = 6 (1 - cos θ) 0 ≤ θ ≤ 2Π Solution Firstly, notice th

How high is a structure, One method of calculating the height of an object ...

One method of calculating the height of an object is to place a mirror on the ground and then position yourself so that the top of the object will be seen in the mirror. How high i

Practical geometry, Ask question draw a line parallel to given line xy at a...

Ask question draw a line parallel to given line xy at a distance of 5cm from it #Minimum 100 words accepted#

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd