Indeterminate forms, Mathematics

Assignment Help:

Indeterminate forms

Limits we specified methods for dealing with the following limits.

967_limit41.png

In the first limit if we plugged in x = 4 we would get 0/0 & in the second limit if we "plugged" within infinity we would get ∞ /-∞ (recall that as x goes to infinity polynomial will act in the similar fashion that its largest power behaves). Both are called indeterminate forms.  In both cases there are competing interests or rules & it's not clear which will win out.

In the case of 0/0 typically we think of a fraction which has a numerator of zero as being zero. Though, we also tend to think of fractions wherein the denominator will zero as infinity or may not exist at all.  Similarly, we tend to think of a fraction wherein the numerator & denominator are the similar as one.  Therefore, which will win out?  Or will neither win out and they all will "cancel out" and the limit will attain some other value?

In the case of ∞ /-∞ we contain a similar set of problems.  If the numerator of fraction will be infinity we tend to think of the whole fraction will be infinity.  Also if the denominator will be infinity we tend to think of the fraction will be zero. We also have the case of a fraction wherein the numerator & denominator are the similar (ignoring the minus sign) and thus we might get -1.  Again, it's not apparent which of these will win out, if any will win out.

Along the second limit there is the further problem which infinity isn't actually a number and therefore we actually shouldn't even treat it as a number.  Most of time it simply won't behave as we would expect it to if it was a number.

It is the problem with indeterminate forms.  It's just not apparent what is happening in the limit. There are other kinds of indeterminate forms as well. Some other kinds are following,

(0) ( ± ∞ )         1       00                 ∞0            ∞ - ∞

2118_limit42.png

These all contain competing interests or rules which tell us what have to happen and it's just not apparent which, if any, of the interests or rules will win out.

For the two limits above we work on them as follows.

1234_limit43.png

In the first case simply we factored, canceled & took the limit and in the second case we factored out an x2 from both the numerator & the denominator and took the limit. Notice that none of the competing interests or rules in these instance won out! That is frequently the case.

Thus we can deal with some of these.  Though what about the following two limits.

29_limit44.png

First is a 0/0 indeterminate form, however we can't factor this one.  The second is an  ∞ /∞   indeterminate form, however we can't just factor an x2 out of the numerator.


Related Discussions:- Indeterminate forms

Some general facts about lines, First, larger the number (ignoring any minu...

First, larger the number (ignoring any minus signs) the steeper the line.  Thus, we can use the slope to tell us something regarding just how steep a line is. Next, if the slope

Find the sum of series r/(r+1)(r+2)(r+3)from 1 upto infinity, Apply the con...

Apply the concept of partial fraction and add the corresponding terms. The terms will get cut automatically leaving the first and last term

Converting mixed numbers to improper fractions, Q. Converting Mixed Numbers...

Q. Converting Mixed Numbers to Improper Fractions? Ans. Converting a mixed number to an improper fraction is easy. A single multiplication, and then a single addition:

Venn diagram, in a class of 55 students, 35 take english, 40 take french, a...

in a class of 55 students, 35 take english, 40 take french, and 5 take other languages.present this information in a venn diagam and determine how many students take both languages

Determine the angle between dec, Using the example provided below, if the m...

Using the example provided below, if the measure ∠AEB = 5x + 40 and ∠BEC = x + 20, determine m∠DEC. a. 40° b. 25° c. 140° d. 65° c. The addition of the measurem

How to adding rational expressions with common denominators, Adding Rationa...

Adding Rational Expressions with Common Denominators To add or subtract fractions or rational expressions with common denominators, all you do is add or subtract the numerators

Arc length with vector functions - three dimensional space, Arc Length with...

Arc Length with Vector Functions In this part we will recast an old formula into terms of vector functions.  We wish to find out the length of a vector function, r → (t) =

Statistics, A researcher is investigating the effectiveness of a new medica...

A researcher is investigating the effectiveness of a new medication for lowering blood pressure for individuals with systolic pressure greater than 140. For this population, systol

Formulas of summation notation, Formulas Now there are a couple of nice...

Formulas Now there are a couple of nice formulas which we will get useful in a couple of sections. Consider that these formulas are only true if starting at i = 1. You can, obv

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd