Indeterminate forms, Mathematics

Assignment Help:

Indeterminate forms

Limits we specified methods for dealing with the following limits.

967_limit41.png

In the first limit if we plugged in x = 4 we would get 0/0 & in the second limit if we "plugged" within infinity we would get ∞ /-∞ (recall that as x goes to infinity polynomial will act in the similar fashion that its largest power behaves). Both are called indeterminate forms.  In both cases there are competing interests or rules & it's not clear which will win out.

In the case of 0/0 typically we think of a fraction which has a numerator of zero as being zero. Though, we also tend to think of fractions wherein the denominator will zero as infinity or may not exist at all.  Similarly, we tend to think of a fraction wherein the numerator & denominator are the similar as one.  Therefore, which will win out?  Or will neither win out and they all will "cancel out" and the limit will attain some other value?

In the case of ∞ /-∞ we contain a similar set of problems.  If the numerator of fraction will be infinity we tend to think of the whole fraction will be infinity.  Also if the denominator will be infinity we tend to think of the fraction will be zero. We also have the case of a fraction wherein the numerator & denominator are the similar (ignoring the minus sign) and thus we might get -1.  Again, it's not apparent which of these will win out, if any will win out.

Along the second limit there is the further problem which infinity isn't actually a number and therefore we actually shouldn't even treat it as a number.  Most of time it simply won't behave as we would expect it to if it was a number.

It is the problem with indeterminate forms.  It's just not apparent what is happening in the limit. There are other kinds of indeterminate forms as well. Some other kinds are following,

(0) ( ± ∞ )         1       00                 ∞0            ∞ - ∞

2118_limit42.png

These all contain competing interests or rules which tell us what have to happen and it's just not apparent which, if any, of the interests or rules will win out.

For the two limits above we work on them as follows.

1234_limit43.png

In the first case simply we factored, canceled & took the limit and in the second case we factored out an x2 from both the numerator & the denominator and took the limit. Notice that none of the competing interests or rules in these instance won out! That is frequently the case.

Thus we can deal with some of these.  Though what about the following two limits.

29_limit44.png

First is a 0/0 indeterminate form, however we can't factor this one.  The second is an  ∞ /∞   indeterminate form, however we can't just factor an x2 out of the numerator.


Related Discussions:- Indeterminate forms

Evaluating the function at the point of limit, Calculate the value of the f...

Calculate the value of the following limit. Solution: This first time through we will employ only the properties above to calculate the limit. Firstly we will employ prop

What is deductive reasoning, What is Deductive Reasoning ? Geometry is...

What is Deductive Reasoning ? Geometry is based on a deductive structure -- a system of thought in which conclusions are justified by means of previously assumed or proved sta

Activities to develop ability to classify, Let us now look at some activiti...

Let us now look at some activities that can be organised with preschoolers to develop their ability to classify. 1. You could start by giving children different materials to pla

Geometry, how to do mathematical proofs

how to do mathematical proofs

Basic operations on fractions, A simple example of fraction would be ...

A simple example of fraction would be a rational number of the form p/q, where q ≠ 0. In fractions also we come across different types of them. The two fractions

Explain lobachevskian geometry and riemannian geometry, Explain Lobachevski...

Explain Lobachevskian Geometry and Riemannian Geometry ? Nineteenth century mathematician Nicolai Lobachevsky assumed that the summit angles of a Saccheri quadrilateral are ac

Fractions, A recipe calls for 2 1/4 teaspoons of salt for every 1 1/8 teasp...

A recipe calls for 2 1/4 teaspoons of salt for every 1 1/8 teaspoons of black pepper used. How many teaspoons of salt are needed for each teaspoon of pepper used ?

+, what is 2+2=

what is 2+2=

Trignometery., using the formula sin A =under root 1+ cos2A /2 . find value...

using the formula sin A =under root 1+ cos2A /2 . find value of 30 degree, it is being given that cos 60 degree =1/2.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd