Indeterminate forms, Mathematics

Assignment Help:

Indeterminate forms

Limits we specified methods for dealing with the following limits.

967_limit41.png

In the first limit if we plugged in x = 4 we would get 0/0 & in the second limit if we "plugged" within infinity we would get ∞ /-∞ (recall that as x goes to infinity polynomial will act in the similar fashion that its largest power behaves). Both are called indeterminate forms.  In both cases there are competing interests or rules & it's not clear which will win out.

In the case of 0/0 typically we think of a fraction which has a numerator of zero as being zero. Though, we also tend to think of fractions wherein the denominator will zero as infinity or may not exist at all.  Similarly, we tend to think of a fraction wherein the numerator & denominator are the similar as one.  Therefore, which will win out?  Or will neither win out and they all will "cancel out" and the limit will attain some other value?

In the case of ∞ /-∞ we contain a similar set of problems.  If the numerator of fraction will be infinity we tend to think of the whole fraction will be infinity.  Also if the denominator will be infinity we tend to think of the fraction will be zero. We also have the case of a fraction wherein the numerator & denominator are the similar (ignoring the minus sign) and thus we might get -1.  Again, it's not apparent which of these will win out, if any will win out.

Along the second limit there is the further problem which infinity isn't actually a number and therefore we actually shouldn't even treat it as a number.  Most of time it simply won't behave as we would expect it to if it was a number.

It is the problem with indeterminate forms.  It's just not apparent what is happening in the limit. There are other kinds of indeterminate forms as well. Some other kinds are following,

(0) ( ± ∞ )         1       00                 ∞0            ∞ - ∞

2118_limit42.png

These all contain competing interests or rules which tell us what have to happen and it's just not apparent which, if any, of the interests or rules will win out.

For the two limits above we work on them as follows.

1234_limit43.png

In the first case simply we factored, canceled & took the limit and in the second case we factored out an x2 from both the numerator & the denominator and took the limit. Notice that none of the competing interests or rules in these instance won out! That is frequently the case.

Thus we can deal with some of these.  Though what about the following two limits.

29_limit44.png

First is a 0/0 indeterminate form, however we can't factor this one.  The second is an  ∞ /∞   indeterminate form, however we can't just factor an x2 out of the numerator.


Related Discussions:- Indeterminate forms

Standard form of a complex number, Standard form of a complex number So...

Standard form of a complex number So, let's start out with some of the basic definitions & terminology for complex numbers. The standard form of a complex number is

Geometry, how to do proving of rectilinear figures?..

how to do proving of rectilinear figures?..

Properties of triangle, In triangle ABC if angle B = 90 degrees what is the...

In triangle ABC if angle B = 90 degrees what is the value Tan A/2 in terms of its sided? Solution) tanA=c/b let tan(A/2)=x 2x/(1-x 2 )=c/b,solve for x

Scalar equation of plane - three dimensional spaces, Scalar Equation of Pla...

Scalar Equation of Plane A little more helpful form of the equations is as follows. Begin with the first form of the vector equation and write a vector for the difference. {

Properties of triangle, in a rhomus ABCD the circum radii of triangles ABD ...

in a rhomus ABCD the circum radii of triangles ABD and ACD are 12.5 cm and 25cm respetively then find the area of rhombus.

Applications of rational numbers, Kaylee makes 56 packages in seven hours T...

Kaylee makes 56 packages in seven hours Taylor makes 20% more packages in nine hours who makes more packages per hour

Decision theory, Decision Theory Decisions There are many types of ...

Decision Theory Decisions There are many types of decision making 1.      Decision making under uncertainty It refer to situations where more than one outcome can r

Determine the length of the field, A rectangular field is to be fenced in c...

A rectangular field is to be fenced in completely. The width is given as 22 yd and the total area is 990 yd 2 . Determine the length of the field? a. 31 yd b. 45 yd c. 968

Algorithm, what does algorithm refer to

what does algorithm refer to

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd