Indeterminate forms, Mathematics

Assignment Help:

Indeterminate forms

Limits we specified methods for dealing with the following limits.

967_limit41.png

In the first limit if we plugged in x = 4 we would get 0/0 & in the second limit if we "plugged" within infinity we would get ∞ /-∞ (recall that as x goes to infinity polynomial will act in the similar fashion that its largest power behaves). Both are called indeterminate forms.  In both cases there are competing interests or rules & it's not clear which will win out.

In the case of 0/0 typically we think of a fraction which has a numerator of zero as being zero. Though, we also tend to think of fractions wherein the denominator will zero as infinity or may not exist at all.  Similarly, we tend to think of a fraction wherein the numerator & denominator are the similar as one.  Therefore, which will win out?  Or will neither win out and they all will "cancel out" and the limit will attain some other value?

In the case of ∞ /-∞ we contain a similar set of problems.  If the numerator of fraction will be infinity we tend to think of the whole fraction will be infinity.  Also if the denominator will be infinity we tend to think of the fraction will be zero. We also have the case of a fraction wherein the numerator & denominator are the similar (ignoring the minus sign) and thus we might get -1.  Again, it's not apparent which of these will win out, if any will win out.

Along the second limit there is the further problem which infinity isn't actually a number and therefore we actually shouldn't even treat it as a number.  Most of time it simply won't behave as we would expect it to if it was a number.

It is the problem with indeterminate forms.  It's just not apparent what is happening in the limit. There are other kinds of indeterminate forms as well. Some other kinds are following,

(0) ( ± ∞ )         1       00                 ∞0            ∞ - ∞

2118_limit42.png

These all contain competing interests or rules which tell us what have to happen and it's just not apparent which, if any, of the interests or rules will win out.

For the two limits above we work on them as follows.

1234_limit43.png

In the first case simply we factored, canceled & took the limit and in the second case we factored out an x2 from both the numerator & the denominator and took the limit. Notice that none of the competing interests or rules in these instance won out! That is frequently the case.

Thus we can deal with some of these.  Though what about the following two limits.

29_limit44.png

First is a 0/0 indeterminate form, however we can't factor this one.  The second is an  ∞ /∞   indeterminate form, however we can't just factor an x2 out of the numerator.


Related Discussions:- Indeterminate forms

Prove that the height of the cloud , HE IGHTS AND DISTANCES If the ...

HE IGHTS AND DISTANCES If the angle of elevation of cloud from a point 'h' meters above a lake is α and the angle of depression of its reflection in the lake is  β , prove

Give the introduction to ratios and proportions, Give the introduction to R...

Give the introduction to Ratios and Proportions? A ratio represents a comparison between two values. A ratio of two numbers can be expressed in three ways: A ratio of "one t

Solve the right triangle, 1. Solve the right triangle. B = 135     c = 3...

1. Solve the right triangle. B = 135     c = 3.72 A  ≈ ____°    (round to the nearest tenth as needed) 2.  Solve the right triangle, where  a =4 and b =10 The length of

Calculate plurality voting and borda count, Consider the following set of p...

Consider the following set of preference lists:                                                      Number of Voters (7)                 Rank            1          1

Area of a parallelogram x what is the height in terms of x, The area of a p...

The area of a parallelogram is x 8 . If the base is x 4 , what is the height in terms of x? Since the area of a parallelogram is A = base times height, then the area divided by

Definition of differential equation, The first definition which we must cov...

The first definition which we must cover is that of differential equation. A differential equation is any equation that comprises derivatives, either partial derivatives or ordinar

Illustration of rank correlation coefficient, Illustration of Rank Correlat...

Illustration of Rank Correlation Coefficient In a beauty competition two assessors were asked to rank the 10 contestants by using the professional assessment skills. The resul

Gravity, There is a list of the forces which will act on the object. Gr...

There is a list of the forces which will act on the object. Gravity, F g The force because of gravity will always act on the object of course. Such force is F g   = mg

Quadratic equation, If roots of (x-p)(x-q) = c are a and b what will be th...

If roots of (x-p)(x-q) = c are a and b what will be the roots of (x-a)(x-b) = -c    please explain? Ans) (x-p)(x-q)=c x2-(p+q)x-c=0 hence,   a+b=p+q  and      a.b=pq-c

Prisoners dilemma, Prisoners Dilemma This is a type of non-zero sum gam...

Prisoners Dilemma This is a type of non-zero sum game and derives its name from the given story: The district attorney has two bank robbers in separate cells and offers them

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd