Indeterminate forms, Mathematics

Assignment Help:

Indeterminate forms

Limits we specified methods for dealing with the following limits.

967_limit41.png

In the first limit if we plugged in x = 4 we would get 0/0 & in the second limit if we "plugged" within infinity we would get ∞ /-∞ (recall that as x goes to infinity polynomial will act in the similar fashion that its largest power behaves). Both are called indeterminate forms.  In both cases there are competing interests or rules & it's not clear which will win out.

In the case of 0/0 typically we think of a fraction which has a numerator of zero as being zero. Though, we also tend to think of fractions wherein the denominator will zero as infinity or may not exist at all.  Similarly, we tend to think of a fraction wherein the numerator & denominator are the similar as one.  Therefore, which will win out?  Or will neither win out and they all will "cancel out" and the limit will attain some other value?

In the case of ∞ /-∞ we contain a similar set of problems.  If the numerator of fraction will be infinity we tend to think of the whole fraction will be infinity.  Also if the denominator will be infinity we tend to think of the fraction will be zero. We also have the case of a fraction wherein the numerator & denominator are the similar (ignoring the minus sign) and thus we might get -1.  Again, it's not apparent which of these will win out, if any will win out.

Along the second limit there is the further problem which infinity isn't actually a number and therefore we actually shouldn't even treat it as a number.  Most of time it simply won't behave as we would expect it to if it was a number.

It is the problem with indeterminate forms.  It's just not apparent what is happening in the limit. There are other kinds of indeterminate forms as well. Some other kinds are following,

(0) ( ± ∞ )         1       00                 ∞0            ∞ - ∞

2118_limit42.png

These all contain competing interests or rules which tell us what have to happen and it's just not apparent which, if any, of the interests or rules will win out.

For the two limits above we work on them as follows.

1234_limit43.png

In the first case simply we factored, canceled & took the limit and in the second case we factored out an x2 from both the numerator & the denominator and took the limit. Notice that none of the competing interests or rules in these instance won out! That is frequently the case.

Thus we can deal with some of these.  Though what about the following two limits.

29_limit44.png

First is a 0/0 indeterminate form, however we can't factor this one.  The second is an  ∞ /∞   indeterminate form, however we can't just factor an x2 out of the numerator.


Related Discussions:- Indeterminate forms

#titldifference between cpm n pert operation research pdfe.., difference be...

difference between cpm n pert operation research pdfepted#

Create a circular table with no restrictions, 1. Four different written dri...

1. Four different written driving tests are administered by a city. One of these tests is selected at random for each applicant for a drivers license. If a group of 2 women and 4 m

Solving trig equations, Solving Trig Equations : Here we will discuss on s...

Solving Trig Equations : Here we will discuss on solving trig equations. It is something which you will be asked to do on a fairly regular basis in my class. Let's just see the

Fractions, #how do I add fractions?

#how do I add fractions?

Calculate and plot the cdf of p-values, A discrete-valued random variable X...

A discrete-valued random variable X takes values in 0, 1, 2, . . . , where p(X = i) = π i. (a) Write down formulas for: the p-value at X = i the probability distributi

Determine the height of the washington monument, Determine the height of th...

Determine the height of the Washington Monument to the nearest tenth of a meter. a. 157.8 m b. 169.3 m c. 170.1 m d. 192.2 m c. The height of the monument is the add

Example of identify the pre-requisites, Ravi is a teacher of Class 4 in a m...

Ravi is a teacher of Class 4 in a municipal school in Delhi. When the new school year started, he opened the textbook and started teaching the children how to write 4-digit numbers

Repetition need not be boring-ways to aid learning maths, Repetition Need N...

Repetition Need Not Be Boring :  From an early age on, children engage in and learn from repetitive behaviour, such as dropping and picking up things, opening and closing boxes an

Conditional probability: independent events, Conditional Probability: Indep...

Conditional Probability: Independent Events If the probability of an event is subject to a restriction on the sample space, the probability is said to be conditional. Co

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd