Indefinite integrals, Mathematics

Assignment Help:

Indefinite Integrals : In the past two chapters we've been given a function, f ( x ) , and asking what the derivative of this function was.  Beginning with this section we are now going to turn things around.  Now we desire to ask what function we differentiated to get the function f ( x ) .

Definitions (anti-derivative, integral symbol, integrand, integration variable)

A function, f ( x ) , an anti-derivative of f ( x ) is any function  F ( x ) such that

                                                       F ′ ( x ) = f ( x )

If F ( x ) is a anti-derivative of f ( x ) then the most general anti-derivative of f ( x ) is called an indefinite integral and specified,

              ∫ f ( x ) dx = F ( x ) + c, c is any constant

In this definition the ∫ is called as the integral symbol, f (x) is called the integrand, x is called as the integration variable and the "c" is called the constant of integration.

                Note as well that frequently we will just say integral instead of indefinite integral (or definite integral for which matter while we get to those).  It will be apparent from the context of the problem that we are talking regarding an indefinite integral (or definite integral).

The procedure of finding the indefinite integral is known as integration or integrating f(x).  If we have to be specific regarding the integration variable we will say that we are integrating f(x) w.r.t. x.

Example   Evaluate the indefinite integral.

∫ x4 + 3x - 9 dx

Solution

As it is really asking for the most general anti-derivative we just require reusing the final answer from the first example.

The indefinite integral is,

∫ x4 + 3x - 9 dx= 1/5 x5 + (3/2) x2 - 9x + c


Related Discussions:- Indefinite integrals

The low temperature in Achorage, The low temperature in Anchorage, Alaska t...

The low temperature in Anchorage, Alaska today was negative four degrees. The low temperature in Los Angeles, California was sixty-three degreees. What is the difference in the two

Find the probability , 1.  What is the probability that the two beverages w...

1.  What is the probability that the two beverages will be of the same kind? 2.  What is the probability that the two beverages will be different? 3.  What is the probability

Find the normal to any point on the surface of convex lenses, Draw a tangen...

Draw a tangent on the lens where you want to find normal .Then line perpendicular to tangent gives normal at that point.

Show that the ratio of the volume of the sphere, A sphere and a cube have e...

A sphere and a cube have equal surface areas. Show that the ratio of the volume of the sphere to that of the cube is √6 : √π. Ans:    S.A. of sphere = S.A of cube    4π r 2

Constructing a dfa/nfa or a regex), Let ∑ = (0, 1). Define the following la...

Let ∑ = (0, 1). Define the following language: L = {x | x contains an equal number of occurrences of 01 and 10} Either prove L is regular (by constructing a DFA/NFA or a rege

How many feet huge is her dining room, Audrey measured the width of her din...

Audrey measured the width of her dining room in inches. It is 150 inches. How many feet huge is her dining room? There are 12 inches in a foot. Divide 150 by 12 to find out the

What is the product of the two numbers in terms of x, A number, x, increase...

A number, x, increased through 3 is multiplied by the similar number, x, increased by 4. What is the product of the two numbers in terms of x? The two numbers in terms of x wou

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd