Indefinite integrals, Mathematics

Assignment Help:

Indefinite Integrals : In the past two chapters we've been given a function, f ( x ) , and asking what the derivative of this function was.  Beginning with this section we are now going to turn things around.  Now we desire to ask what function we differentiated to get the function f ( x ) .

Definitions (anti-derivative, integral symbol, integrand, integration variable)

A function, f ( x ) , an anti-derivative of f ( x ) is any function  F ( x ) such that

                                                       F ′ ( x ) = f ( x )

If F ( x ) is a anti-derivative of f ( x ) then the most general anti-derivative of f ( x ) is called an indefinite integral and specified,

              ∫ f ( x ) dx = F ( x ) + c, c is any constant

In this definition the ∫ is called as the integral symbol, f (x) is called the integrand, x is called as the integration variable and the "c" is called the constant of integration.

                Note as well that frequently we will just say integral instead of indefinite integral (or definite integral for which matter while we get to those).  It will be apparent from the context of the problem that we are talking regarding an indefinite integral (or definite integral).

The procedure of finding the indefinite integral is known as integration or integrating f(x).  If we have to be specific regarding the integration variable we will say that we are integrating f(x) w.r.t. x.

Example   Evaluate the indefinite integral.

∫ x4 + 3x - 9 dx

Solution

As it is really asking for the most general anti-derivative we just require reusing the final answer from the first example.

The indefinite integral is,

∫ x4 + 3x - 9 dx= 1/5 x5 + (3/2) x2 - 9x + c


Related Discussions:- Indefinite integrals

Definition and theorem of derivation, Definition : A function f ( x ) is c...

Definition : A function f ( x ) is called differentiable at x = a if f ′ ( x ) exists & f ( x ) is called differentiable onto an interval if the derivative present for each of the

Determine the area of the inner loop - polar coordinates, Determine or find...

Determine or find out the area of the inner loop of r = 2 + 4 cosθ. Solution We can graphed this function back while we first started looking at polar coordinates.  For thi

Binomial, how do you find the co=efficent when there are two brackets invol...

how do you find the co=efficent when there are two brackets involved?

Applications of derivatives rate change, Application of rate change Bri...

Application of rate change Brief set of examples concentrating on the rate of change application of derivatives is given in this section.  Example    Find out all the point

Determine the price paid for a land, A parcel of land, value $250,000 is so...

A parcel of land, value $250,000 is sold to an investor who signs a contract agreeing to pay a deposit of $25,000 followed by equal quarterly payments for as long as necessary, wit

Introducing counting, INTRODUCING COUNTING : From what you studied previou...

INTRODUCING COUNTING : From what you studied previous study, you know what it means to count. You would also agree that rote learning of number names does not always mean that the

How to subtract fractions involving negative numbers, Q. How to Subtract fr...

Q. How to Subtract fractions involving negative numbers? Ans. This is the same as adding them, but just remember the rule that two negatives on the same fraction cancel ou

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd