Indefinite integrals, Mathematics

Assignment Help:

Indefinite Integrals : In the past two chapters we've been given a function, f ( x ) , and asking what the derivative of this function was.  Beginning with this section we are now going to turn things around.  Now we desire to ask what function we differentiated to get the function f ( x ) .

Definitions (anti-derivative, integral symbol, integrand, integration variable)

A function, f ( x ) , an anti-derivative of f ( x ) is any function  F ( x ) such that

                                                       F ′ ( x ) = f ( x )

If F ( x ) is a anti-derivative of f ( x ) then the most general anti-derivative of f ( x ) is called an indefinite integral and specified,

              ∫ f ( x ) dx = F ( x ) + c, c is any constant

In this definition the ∫ is called as the integral symbol, f (x) is called the integrand, x is called as the integration variable and the "c" is called the constant of integration.

                Note as well that frequently we will just say integral instead of indefinite integral (or definite integral for which matter while we get to those).  It will be apparent from the context of the problem that we are talking regarding an indefinite integral (or definite integral).

The procedure of finding the indefinite integral is known as integration or integrating f(x).  If we have to be specific regarding the integration variable we will say that we are integrating f(x) w.r.t. x.

Example   Evaluate the indefinite integral.

∫ x4 + 3x - 9 dx

Solution

As it is really asking for the most general anti-derivative we just require reusing the final answer from the first example.

The indefinite integral is,

∫ x4 + 3x - 9 dx= 1/5 x5 + (3/2) x2 - 9x + c


Related Discussions:- Indefinite integrals

Trigonometric ratios, to difine trigonometric ratios of an angle,is it nece...

to difine trigonometric ratios of an angle,is it necessary that the initial ray of the angle must be positive x-axis?

Differential equation - maple, 1. Consider the following differential equat...

1. Consider the following differential equation with initial conditions: t 2 x'' + 5 t x' + 3 x = 0, x(1) = 3, x'(1) = -13. Assume there is a solution of the form: x (t) = t

Division of two like terms, Case 1: Suppose we have two terms 8ab and 4ab. ...

Case 1: Suppose we have two terms 8ab and 4ab. On dividing the first by the second we have 8ab/4ab = 2 or 4ab/8ab = (1/2) depending on whether we consider either 8ab or 4ab as the

What is equivalent of this temperature in degrees fahrenheit, The temperatu...

The temperature in Hillsville was 20° Celsius. What is the equivalent of this temperature in degrees Fahrenheit? This problem translates to the expression 3 {[2 - (-7 + 6)] + 4

Calculus, Given f (x) =10x^3 - x^5 , find all intervals(in Interval Notatio...

Given f (x) =10x^3 - x^5 , find all intervals(in Interval Notation) of Concavity and the x-values of all Inflection Points.

Calculus, The law of cosines can only be applied to acute triangles. Is thi...

The law of cosines can only be applied to acute triangles. Is this true or false?

Devision, how many times can u put 10000 into 999999

how many times can u put 10000 into 999999

Pair of straight lines, the adjacent sides of a parallelogram are 2x2-5xy+3...

the adjacent sides of a parallelogram are 2x2-5xy+3y2=0 and one diagonal is x+y+2=0 find the vertices and the other diagonal

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd