Indefinite integrals, Mathematics

Assignment Help:

Indefinite Integrals : In the past two chapters we've been given a function, f ( x ) , and asking what the derivative of this function was.  Beginning with this section we are now going to turn things around.  Now we desire to ask what function we differentiated to get the function f ( x ) .

Definitions (anti-derivative, integral symbol, integrand, integration variable)

A function, f ( x ) , an anti-derivative of f ( x ) is any function  F ( x ) such that

                                                       F ′ ( x ) = f ( x )

If F ( x ) is a anti-derivative of f ( x ) then the most general anti-derivative of f ( x ) is called an indefinite integral and specified,

              ∫ f ( x ) dx = F ( x ) + c, c is any constant

In this definition the ∫ is called as the integral symbol, f (x) is called the integrand, x is called as the integration variable and the "c" is called the constant of integration.

                Note as well that frequently we will just say integral instead of indefinite integral (or definite integral for which matter while we get to those).  It will be apparent from the context of the problem that we are talking regarding an indefinite integral (or definite integral).

The procedure of finding the indefinite integral is known as integration or integrating f(x).  If we have to be specific regarding the integration variable we will say that we are integrating f(x) w.r.t. x.

Example   Evaluate the indefinite integral.

∫ x4 + 3x - 9 dx

Solution

As it is really asking for the most general anti-derivative we just require reusing the final answer from the first example.

The indefinite integral is,

∫ x4 + 3x - 9 dx= 1/5 x5 + (3/2) x2 - 9x + c


Related Discussions:- Indefinite integrals

Sets, creative assignment about sets

creative assignment about sets

Calculus, The law of cosines can only be applied to acute triangles. Is thi...

The law of cosines can only be applied to acute triangles. Is this true or false?

What is multiplying fractions, What is Multiplying Fractions ? The rule...

What is Multiplying Fractions ? The rule for multiplying fractions is to "multiply across": Multiply the numerators to get the numerator of the answer. Multiply the den

Solution to an equation or inequality, First, a solution to an equation or ...

First, a solution to an equation or inequality is any number that, while plugged into the equation/inequality, will satisfy the equation/inequality. Thus, just what do we mean by

Determine centigrade equivalent for a temperature, 1. 10 -2 is equal to ...

1. 10 -2 is equal to 2. If 3n = 27, what is the value of (4n) + 1 3. What is 1/100 of 10000? 4. The formula C=5/9 x (F-32) converts Centigrade temperature from Fa

Tests for relative minimum, Tests for relative minimum For a relative ...

Tests for relative minimum For a relative minimum point there are two tests: i.The first derivative, which is (dy)/(dx)  = f´(x) = 0 ii.The second derivative, which i

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd