Indefinite integrals, Mathematics

Assignment Help:

Indefinite Integrals : In the past two chapters we've been given a function, f ( x ) , and asking what the derivative of this function was.  Beginning with this section we are now going to turn things around.  Now we desire to ask what function we differentiated to get the function f ( x ) .

Definitions (anti-derivative, integral symbol, integrand, integration variable)

A function, f ( x ) , an anti-derivative of f ( x ) is any function  F ( x ) such that

                                                       F ′ ( x ) = f ( x )

If F ( x ) is a anti-derivative of f ( x ) then the most general anti-derivative of f ( x ) is called an indefinite integral and specified,

              ∫ f ( x ) dx = F ( x ) + c, c is any constant

In this definition the ∫ is called as the integral symbol, f (x) is called the integrand, x is called as the integration variable and the "c" is called the constant of integration.

                Note as well that frequently we will just say integral instead of indefinite integral (or definite integral for which matter while we get to those).  It will be apparent from the context of the problem that we are talking regarding an indefinite integral (or definite integral).

The procedure of finding the indefinite integral is known as integration or integrating f(x).  If we have to be specific regarding the integration variable we will say that we are integrating f(x) w.r.t. x.

Example   Evaluate the indefinite integral.

∫ x4 + 3x - 9 dx

Solution

As it is really asking for the most general anti-derivative we just require reusing the final answer from the first example.

The indefinite integral is,

∫ x4 + 3x - 9 dx= 1/5 x5 + (3/2) x2 - 9x + c


Related Discussions:- Indefinite integrals

Interpretation, Interpretation A high value of r as +0.9 or - 0...

Interpretation A high value of r as +0.9 or - 0.9 only shows a strong association among the two variables but doesn't imply that there is a causal relationship that is

Example of a function - inflection point, 1. (a) Give an example of a funct...

1. (a) Give an example of a function, f(x), that has an inflection point at (1, 4). (b) Give an example of a function, g(x), that has a local maximum at ( -3, 3) and a local min

Parity to De-Skew, Consider the following proposal to deskew a skewed bitst...

Consider the following proposal to deskew a skewed bitstream from a TRNG. Consider the bitstream to be a sequence of groups ot n bits for some n > 2. Take the first n bits, and o

Math, how do you do algebra in 4th grade

how do you do algebra in 4th grade

Quantitative Techniques, The following table given the these scores and sal...

The following table given the these scores and sales be nine salesman during last one year in a certain firm: text scores sales (in 000''rupees) 14 31 19

#title.heat loss in a cylindrical pipe., briefly explain how the famous equ...

briefly explain how the famous equation for the loss of heat in a cylindrical pipe is derived

Arthimetic progressions, what is the ratio of sides of a right angle triang...

what is the ratio of sides of a right angle triangle which are in A.P

The shape of a graph, The Shape of a Graph, Part II : In previous we saw h...

The Shape of a Graph, Part II : In previous we saw how we could use the first derivative of a function to obtain some information regarding the graph of a function.  In this secti

Numeration, which of these is between 5,945,089 and 5,956,108

which of these is between 5,945,089 and 5,956,108

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd