Indefinite integrals, Mathematics

Assignment Help:

Indefinite Integrals : In the past two chapters we've been given a function, f ( x ) , and asking what the derivative of this function was.  Beginning with this section we are now going to turn things around.  Now we desire to ask what function we differentiated to get the function f ( x ) .

Definitions (anti-derivative, integral symbol, integrand, integration variable)

A function, f ( x ) , an anti-derivative of f ( x ) is any function  F ( x ) such that

                                                       F ′ ( x ) = f ( x )

If F ( x ) is a anti-derivative of f ( x ) then the most general anti-derivative of f ( x ) is called an indefinite integral and specified,

              ∫ f ( x ) dx = F ( x ) + c, c is any constant

In this definition the ∫ is called as the integral symbol, f (x) is called the integrand, x is called as the integration variable and the "c" is called the constant of integration.

                Note as well that frequently we will just say integral instead of indefinite integral (or definite integral for which matter while we get to those).  It will be apparent from the context of the problem that we are talking regarding an indefinite integral (or definite integral).

The procedure of finding the indefinite integral is known as integration or integrating f(x).  If we have to be specific regarding the integration variable we will say that we are integrating f(x) w.r.t. x.

Example   Evaluate the indefinite integral.

∫ x4 + 3x - 9 dx

Solution

As it is really asking for the most general anti-derivative we just require reusing the final answer from the first example.

The indefinite integral is,

∫ x4 + 3x - 9 dx= 1/5 x5 + (3/2) x2 - 9x + c


Related Discussions:- Indefinite integrals

Algebra, Tom has five times as many marbles as Jim. together they have 42 m...

Tom has five times as many marbles as Jim. together they have 42 marbles. how many marbles does each has?

Abels theorem, If y 1 (t) and y 2 (t) are two solutions to y′′ + p (t ) ...

If y 1 (t) and y 2 (t) are two solutions to y′′ + p (t ) y′ + q (t ) y = 0 So the Wronskian of the two solutions is, W(y 1 ,y 2 )(t) = =

Shortcuts, pls told the maths shortcuts

pls told the maths shortcuts

Pairs of straight lines, The equation ax2 + 2hxy + by2 =0 represents a pair...

The equation ax2 + 2hxy + by2 =0 represents a pair of straight lines passing through the origin and its angle is tan q = ±2root under h2-ab/(a+b) and even the eqn ax2+2hxy+by2+2gx+

Invariant lines under transformation, What lines are invariant under the tr...

What lines are invariant under the transformation [(103)(01-4)(001)]? I do not know where to even begin to solve this. Please help!!

Geometry, how to do proving of rectilinear figures?..

how to do proving of rectilinear figures?..

Explain the algebraic expressions and equations, Explain the Algebraic Expr...

Explain the Algebraic Expressions and Equations? Writing a math problem algebraically means that you are using numbers and variables to represent relationships. "Three inche

Fractions, question paper on fractions

question paper on fractions

Evaluating the function at the point of limit, Calculate the value of the f...

Calculate the value of the following limit. Solution: This first time through we will employ only the properties above to calculate the limit. Firstly we will employ prop

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd