Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Inconsistent systems example
Example Solve the given systems of equations.
x - y = 6
-2x + 2 y = 1
Solution
We can utilize either method here, although it looks like substitution would possibly be slightly easier.
We'll solve out the first equation for x & substitute that in the second equation.
x = 6 + y
-2 (6 + y )+ 2 y = 1
-12 - 2 y + 2 y = 1
-12 =1 ??
Thus, this is clearly not true and there doesn't seem to be a mistake anywhere in our work. Hence, what's the problem? To see let's graph these two lines and illustrates what we get.
It seem that these two lines are parallel (can you check that with the slopes?) and we know that two parallel lines along with different y-intercepts (that's significant) will never cross.
Since we saw in the opening discussion of this section solutions revel the point where two lines intersect. If two lines don't intersect we can't comprise a solution.
Thus, when we get this kind of nonsensical answer from our work we contain two parallel lines and there is no solution to this system of equations.
This system is called inconsistent. Note that if we'd utilized elimination on this system we would have ended up with a similar nonsensical answer.
techniques for creating equations for algebra 2 word problems
7x+2(3x-1)
I am trying to find the answer to y=x^2+12x-11 Would you help me
2 bicyclist riding on a circular track start at the same time. one can make it around the track in 8 min. the other takes 10 min. how long will it take the faster bicyclist to catc
w^2 + 30w + 81= (-9x^3 + 3x^2 - 15x)/(-3x) (14y = 8y^2 + y^3 + 12)/(6 + y) ac + xc + aw^2 + xw^2 10a^2- 27ab + 5b^2 For the last problem I have to incorporate the following words
A police academy is training 14 new recruits. Some are working dogs and others are police officers. There are 38 legs in all. How many of each type of recruits are there?
28,14...is the sequence arithmetic or geometric?
The slope is -3 and the y-intercept is 4. How do I find a relation in the form y=mx+b which has a solution set line satisfying the given conditions?
Miscellaneous Functions The importance of this section is to introduce you with some other functions that don't really need the work to graph that the ones which we've looked
add - 3a + b - 10 -6c, c -d- a + 9 and - 4c +2a - 3b - 7
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd