Inconsistent systems example, Algebra

Assignment Help:

Inconsistent systems example

Example Solve the given systems of equations.

x - y = 6

-2x + 2 y = 1

Solution

We can utilize either method here, although it looks like substitution would possibly be slightly easier.

We'll solve out the first equation for x & substitute that in the second equation.

x = 6 + y

-2 (6 + y )+ 2 y = 1

-12 - 2 y + 2 y = 1

-12 =1  ??

Thus, this is clearly not true and there doesn't seem to be a mistake anywhere in our work.  Hence, what's the problem?  To see let's graph these two lines and illustrates what we get.

357_Inconsistent systems example.png

It seem that these two lines are parallel (can you check that with the slopes?) and we know that two parallel lines along with different y-intercepts (that's significant) will never cross.

Since we saw in the opening discussion of this section solutions revel the point where two lines intersect.  If two lines don't intersect we can't comprise a solution.

Thus, when we get this kind of nonsensical answer from our work we contain two parallel lines and there is no solution to this system of equations.

This system is called inconsistent.  Note that if we'd utilized elimination on this system we would have ended up with a similar nonsensical answer.


Related Discussions:- Inconsistent systems example

Mathematical definition absolute value equations, We can also indicate a st...

We can also indicate a strict mathematical/formula definition for absolute value.  It is, It tells us to look at the sign of p & if it's positive we just drop the absolute

Factoring.., w^2 + 30w + 81= (-9x^3 + 3x^2 - 15x)/(-3x) (14y = 8y^2 + y^3 +...

w^2 + 30w + 81= (-9x^3 + 3x^2 - 15x)/(-3x) (14y = 8y^2 + y^3 + 12)/(6 + y) ac + xc + aw^2 + xw^2 10a^2- 27ab + 5b^2 For the last problem I have to incorporate the following words

MATHHH HELPPP, the sum of three consecutive odd integers is -195. find the ...

the sum of three consecutive odd integers is -195. find the three integers.

Determine a graph which have x-intercepts, Remember that a graph will have ...

Remember that a graph will have a y-intercept at the point (0, f (0)) .  Though, in this case we have to ignore x = 0 and thus this graph will never cross the y-axis. It does get e

Division algorithm, Given a polynomial P(x) along degree at least 1 & any n...

Given a polynomial P(x) along degree at least 1 & any number r there is another polynomial Q(x), called  as the quotient , with degree one less than degree of P(x) & a number R, c

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd