Important points about the curve segment, Computer Graphics

Assignment Help:

Important Points about the Curve segment - properties of bezier curves

Note: if P (u) → = Bezier curve of sequence n and Q (u) → Bezier curve of sequence m.

After that Continuities in between P(u) and Q(u) are as:

1)      Positional continuity of 2 curves

892_Important Points about the Curve Segment.png

That is pn = q0

2)       C1 continuity of 2 curve P (u) and Q (u) as that point pn - 1, pn on curve P(u) and q0, q1 points upon curve Q(u) are collinear that is:

n( pn  - pn-1 ) = m(q1 - q0 )

n q1  = q0  +( pn  - pn -1 ).(n/m)

 ⇒ (d p/du)u=1         =  (d q/dv)v=0

G(1)  continuity of two curves P(u) and Q(u) at the joining that are the end of P(u) along with the beginning of q(u) as:

pn  = q0n( pn  - pn -1 ) = kn(q1  - q0 ),

Here k is a constant and k > 0

⇒ pn -1 , p­  = q0 , q1  are collinear

3)  c2 continuity is:

a)   C(1) continuity

b)   m (m - 1) (q0 - 2q1 + q2)

= n (n - 1) (pn - 2pn - 1 + pn - 2)

That points are as: pn - 2, pn - 1, pn of P(u) and points q0 , q1, q2 of Q(u) should  be collinear further we can verify whether both second and first order derivatives of two curve sections are similar at the intersection or not  that is:

(d p)/( d u) u=1  =   (d q) /(d v )v=0

And (d2 p)/( d u2) u=1  =   (d2 q) /(d v2 )v=0

Whether they are similar we can as we have C2 continuity   

 Note: as the same we can explain higher order parametric continuities


Related Discussions:- Important points about the curve segment

BINARY, WHAT THAT S MEANS 0001

WHAT THAT S MEANS 0001

Translate a triangle and scale it in coordinate direction, Translate a tria...

Translate a triangle and scale it in each coordinate direction Consider a triangle with vertices in 2D plane given by (0, 0), (1, 0) and (0,1) (called unit triangle).  Translat

Common transformation for parallel projection-transformation, Derive the co...

Derive the common transformation for parallel projection into a specified view plane, here the direction of projection d=aI+bJ+cK is along the normal N=n1I+n2J+n3K along with the r

What is orthographic oblique projection, What is orthographic oblique proje...

What is orthographic oblique projection?  When the direction of the projection is not normal (not perpendicular) to the view plane then the projection is called as oblique proj

Variation of intensity - modeling and rendering, Variation of Intensity - M...

Variation of Intensity - Modeling and Rendering According to the phong model the variation of Intensity (I) along with α (since I α cos n α) is: i) for shiny surface (

Hypermedia, Hypermedia: it is a superset of hypertext. Hypermedia document...

Hypermedia: it is a superset of hypertext. Hypermedia documents comprise links not only to the other pieces of text, although also to other forms of media: sounds and images and m

Various ways of simulating motion, Various ways of simulating motion:- ...

Various ways of simulating motion:- -        Zero Acceleration (Constant Speed)           -        Non-Zero Accelerations -        Positive accelerations

Concept of area subdivision method, Q.   Explain the concept of area subdiv...

Q.   Explain the concept of area subdivision method. Write the conditions, when no further subdivision is needed and how we can test these condition. Ans. Area Subdivision Th

Explain about the computer-aided design, Explain about the Computer-Aided D...

Explain about the Computer-Aided Design CAD is used in the design and development of new products in a several of applications both at home and on a commercial/industrial basis

Line drawing algorithm, when dda line drawing algorithm is more efficient t...

when dda line drawing algorithm is more efficient than bresenhem line drawing algorithm?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd