Important points about the alternating series test, Mathematics

Assignment Help:

Important Points About the Alternating Series Test

There are a several things to note about this test.  Very first, unlike the Integral Test and the Comparison or Limit Comparison Test, this test will just only tell us while a series converges and not if a series will diverge.

After that 2nd, in the second state all that we need to require is that the series terms, bn will be eventually decreasing.  It is probable for the first few terms of a series to raise and still have the test be valid.  All that is needed is that eventually we will have bn ≥ bn+1 for all n later than some point.

 To observe why this is consider the subsequent series,

1288_Important Points About the Alternating Series Test 1.png

Let us assume that for 1<n<N {bn} is not decreasing and that for n > N+1 {bn} is decreasing. The series can be written like:

1093_Important Points About the Alternating Series Test 2.png

Here the first series is a finite sum there is no matter how large N is of finite terms and thus we can calculate its value and it will be finite.  The convergence of this series will depend upon only on the convergence of the second that is infinite series.  If the 2nd series has a finite value as compared to the sum of two finite values is as well finite and thus the original series will converge to a finite value.  Alternatively if the second series is divergent either as its value is infinite or it doesn't have a value after that adding a finite number onto this will not change that fact and thus the original series will be divergent.

The point of all this is that we do not need to require that the series terms be decreasing for each n.  We just only need to require that the series terms will eventually be decreasing as we can all time strip out the first few terms that aren't in fact decreasing and look only at the terms which are actually decreasing.

 Note: in reality, we don't actually strip out the terms which aren't decreasing.  All we do is test that eventually the series terms are decreasing and after that apply the test.


Related Discussions:- Important points about the alternating series test

each player selects one of her two remaining chips , Consider the followin...

Consider the following parlor game to be played between two players. Each player begins with three chips: one red, one white, and one blue. Each chip can be used only once. To beg

Compute standard and variance deviation, A firm is manufacturing 45,000 uni...

A firm is manufacturing 45,000 units of nuts. The probability of having a defective nut is 0.15 Compute the given i. The expected no. of defective nuts ii. The standard an

Caselets, how are indian customers visiting shoppers stop any different fro...

how are indian customers visiting shoppers stop any different from customers of developed western countries

The multiplication algorithm, THE MULTIPLICATION ALGORITHM :  Some Class 3...

THE MULTIPLICATION ALGORITHM :  Some Class 3 children in a nearby school had been taught the standard multiplication. Algorithm, and had even done reasonably well in the tests bas

Find out arc length - applications of integrals, Find out the length of y =...

Find out the length of y = ln(sec x ) between 0 x π/4. Solution In this example we'll need to use the first ds as the function is in the form y = f (x). So, let us g

Deflation, Deflation Indexes may be utilized to deflate time series so...

Deflation Indexes may be utilized to deflate time series so that comparisons among periods may be made in real terms. This is a process of decreases a value measured in cur

Bayes’ theorem, Bayes’ Theorem In its general form, Bayes' theorem deal...

Bayes’ Theorem In its general form, Bayes' theorem deals with specific events, such as A 1 , A 2 ,...., A k , that have prior probabilities. These events are mutually exclusive

Polynomials in two variables, Polynomials in two variables Let's take a...

Polynomials in two variables Let's take a look at polynomials in two variables.  Polynomials in two variables are algebraic expressions containing terms in the form ax n y m

Substitutions at bernoulli equations, In the prior section we looked at Ber...

In the prior section we looked at Bernoulli Equations and noticed that in order to solve them we required to use the substitution v = y 1-n . By using this substitution we were cap

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd