Implementation of modern memory management system , Operating System

Assignment Help:

Central to implementation of a modern memory management system is the page replacement algorithm. Modern virtual memory systems break memory up into pages and map (via a page table) only the pages needed, or a maximum number of pages that is constrained by system load, into the address space of the process. The page replacement algorithm is used to decide which page/s of memory to evict when different pages of memory are needed.

Using the simulators provided you will develop an understanding of the algorithms involved and perform a comparison of the efficiency of these algorithms.

2. The Simulators

The speci?cations of the simulators are as follows:

  • Only a single process run is simulated, so all the available physical memory constitutes the resident set for this process. This represents ?xed allocation, local scope policy for the resident sets.
  • The physical memory size (in frames) is an input parameter to the program. This should be less than the number of virtual pages, so some of the process pages will not ?t into physical memory.
  • The virtual address is 16-bit long. The page is addressed by the high-order 8 bits, and the offset within the page by the low-order 8 bits, so there are 256 virtual pages, each capable of holding 256 bytes.

The following data structures are provided:

  • A linear page table, which maps the virtual page number to a physical frame number. Each page table entry contains the physical frame number, and a valid bit. Other control bits or items should be added to facilitate implementation of the chosen page replacement strategy.
  • A free list, which is a list of all frames in physical memory available for allocation to the process. Initially all available frames belong to this list.
  • A resident set, which is a list of physical frames allocated to the process. Initially  this list is empty.

Initially all available frames are free, and can be allocated to the process on demand. When the free list runs out of frames, one of the frames in the resident set must be freed for the incoming page. The choice of the victim page is governed by the replacement policy.

The execution of the process is simulated by the pager program which reads virtual addresses from the input ?le, and allocates new frames to the process as required.

3 Simulator Algorithms

Three simulators (that share a common codebase) have been provided. They implement the following algorithms:

  • FIFO
  • LRU
  • Optimal

You should research each of these algorithms and develop an understanding of how these algorithms work. You do not need to understand the code beyond the level of how to run the simulators.

4 Algorithm Comparison

Four input ?les have been provided that simulate different process workloads. You should use these as input to the simulators, varying the memory size to determine which is the most ef?cient algorithm for each input, and which is the most ef?cient overall. Plotting available memory versus page fault rate will help you in this task. A spreadsheet has also been provided to assist you in making these plots.

You should after performing these experiments be able to make a recommendation about which algorithm is best for use in a real system.

5 Deliverable and Marking Guide

You are required to write a report that includes the following information, with the marks available are indicated on the right hand side:

  • Introduction to the report
  • Description of "FIFO"
  • Description of "LRU"
  • Description of "Optimal"
  • Description of experiments performed, this should be an overview of the techniques used, the results will pin this down.
  • Presentation of results for input ?le 1, (this could just be a graph), and a ranking of the three algorithms performance.
  • Presentation of results for input ?le 2 and a ranking of the three algorithms performance.
  • Presentation of results for input ?le 3 and a ranking of the three algorithms performance.
  • Presentation of results for input ?le 4 and a ranking of the three algorithms performance.
  • Conclusions and recommendation of algorithm, this should be supported by your data.

Related Discussions:- Implementation of modern memory management system

What is internal fragmentation?, What is internal fragmentation? Consid...

What is internal fragmentation? Consider holes of 20k assume the process requests 18 bites. If we allocate accurately the request block, we are left with a hole of 2k. The over

Steps to run a program on a completely dedicated machine, Q. List the four ...

Q. List the four steps that are essential to run a program on a completely dedicated machine. Answer: a) Reserve machine time b) Manually load program into memory c)

What is a real-time system?, What is a Real-time system? A Real-time sy...

What is a Real-time system? A Real-time system is used when inflexible time requirements have placed on the operation of processor or the flow of data so it is often used as a

What are the various process scheduling concepts, What are the various proc...

What are the various process scheduling concepts? a) Scheduling queues with diagram b) Queuing diagram c) Schedulers d) Context switch with diagram

Deadlock prevention, While it is hard to resolve a deadlock which has been ...

While it is hard to resolve a deadlock which has been detected, fortunately it is fairly easy to prevent deadlocks from ever happening. The key is that the conditions above for dea

Command interpreters, Develop a user mode command interpreter which support...

Develop a user mode command interpreter which support these functions: "list-short" -- just like ls without any options "list-long" -- same as ls -l "change" -- same as cd Your co

Define system call, Define System Call A system call is a request that ...

Define System Call A system call is a request that is made by any program to the operating system for carrying out tasks - picked from a predefined set - which the said program

Explain variable partitioning technique, VARIABLE PARTITIONING We can d...

VARIABLE PARTITIONING We can differ the partitions and change the location according to the size of the process. Here if a 10k process enters we are able to make a space of

What are the advantages of using unequal- size partitions, In fixed portion...

In fixed portioning scheme, what are the advantages of using unequal- size partitions? With unequal-size partitions there are two probable ways to assign process to partitions.

Explain the per thread scoping, Explain the Per Thread Scoping Thread-l...

Explain the Per Thread Scoping Thread-level programming introduces new twists for application-level variable scoping. Threads are commonly used in one of two ways. To ex

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd