Implement a min-heap, Data Structure & Algorithms

Assignment Help:

Description

A heap is an efficient tree-based data structure that can be used as a priority queue. Recall that the abstract data type of a priority queue has the following operations

  • size, isEmpty, min
  • insert
  • removeMin

We can describe the priority queue ADT using the following Java Entry class and interface:

1 import java.lang.Comparable;

2

3 /**

4 * When items are added to the heap, you should create an Entry object

5 * to hold the key and value and store this in the appropriate node

6 */

7 public class Entryextends Comparable,V> {

8 protected K key;

9 protected V value;

10 public MyEntry(K k, V v) { key = k; value = v; }

11 public K getKey() { return key; }

12 public V getValue() { return value; }

13 public String toString() { return "(" + key + "," + value + ")"; }

14 }

15

16 public interface PriorityQueueextends Comparable,V> {

17 /** Returns the number of items in the priority queue. */

18 public int size();

19 /** Returns whether the priority queue is empty. */

20 public boolean isEmpty();

21 /** Returns but does not remove an entry with minimum key. */

22 public Entry min();

23 /** Inserts a key-value pair and return the entry created. */

24 public Entry insert(K key, V value);

25 /** Removes and returns an entry with minimum key. */

26 public Entry removeMin();

27 }

 

The main operations (insert, removeMin) can be done in O(log n) with a heap, while the other operations of the priority queue ADT (isEmpty, size, or look up the min value) are constant time. In lectures we have seen how to implement a heap using an array-based implementation.

58_Implement a min-heap.png

Figure 1: 3-way heap example

For this assignment you must implement a min-heap using a using a tree-based implementation (similar to the binary tree class we have used in tutorials). This tree should be 3-way tree, where each node needs to have (at most) three children

Note that the definition of a 3-way heap is identical to that of a binary heap, except for allowing at most three children (see Figure ). As with a binary tree, every node must have all of its children, except for the nodes at the last levels of the tree. In more detail, your task is to

1. Design a 3-way tree structure that you will use for building your heap. You can use code provided in the book. You can use any helper data structures that you need (linked lists, arrays etc.), but you must implement the tree structure yourself.

2. Implement your design for a generic 3-way heap in a class called ThreewayHeap. You will need to implement all operations (insert, removeMin, isEmpty, etc.) in the supplied interface and skeleton for the 3-way heap. In most cases the extension is straightforward from binary heaps, with certain extra cases that you need to check.

3. Include a method in your heap to print out a visual representation in DOT format (helpful for testing/debugging purposes).

4. Design test cases for your new heap structure, used as a priority queue

5. Use the provided test code on your implementation


Related Discussions:- Implement a min-heap

Inorder and preorder traversal to reconstruct a binary tree, Q. Using the f...

Q. Using the following given inorder and preorder traversal reconstruct a binary tree Inorder sequence is D, G, B, H, E, A, F, I, C

What is algorithms optimality, What is algorithm's Optimality? Optimali...

What is algorithm's Optimality? Optimality  is  about  the  complexity  of  the  problem  that  algorithm  solves.  What  is  the  minimum amount  of  effort  any  algorithm  w

Explain class p problems, Explain class P problems Class  P  is  a  cla...

Explain class P problems Class  P  is  a  class  of  decision  problems  that  can  be  solved  in  polynomial time  by(deterministic) algorithms. This class of problems is kno

Depth of complete binary tree, What will be depth do , of complete binary t...

What will be depth do , of complete binary tree of n nodes, where nodes are labelled from 1 to n with root as node and last leaf node as node n

Explain the prim''s minimum spanning tree algorithm, Question 1. Explai...

Question 1. Explain the different types of traversal on binary tree 2. Explain the Prim's minimum spanning tree algorithm 3. Differentiate fixed and variable storage allo

Objectives of lists, After going through this unit, you will be able to: ...

After going through this unit, you will be able to: • define and declare Lists; • understand the terminology of Singly linked lists; • understand the terminology of Doubly

Infix expression has balanced parenthesis or not, Q. By making use of stack...

Q. By making use of stacks, write an algorithm to determine whether the infix expression has balanced parenthesis or not.

Best case, Best Case: If the list is sorted already then A[i] T (n) = ...

Best Case: If the list is sorted already then A[i] T (n) = c1n + c2 (n -1) + c3(n -1) + c4 (n -1)  = O (n), which indicates that the time complexity is linear. Worst Case:

Representation of a sparse matrix, Let us assume a sparse matrix from stora...

Let us assume a sparse matrix from storage view point. Assume that the entire sparse matrix is stored. Then, a significant amount of memory that stores the matrix consists of zeroe

Recursion, difference between recursion and iteration

difference between recursion and iteration

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd