Implement a min-heap, Data Structure & Algorithms

Assignment Help:

Description

A heap is an efficient tree-based data structure that can be used as a priority queue. Recall that the abstract data type of a priority queue has the following operations

  • size, isEmpty, min
  • insert
  • removeMin

We can describe the priority queue ADT using the following Java Entry class and interface:

1 import java.lang.Comparable;

2

3 /**

4 * When items are added to the heap, you should create an Entry object

5 * to hold the key and value and store this in the appropriate node

6 */

7 public class Entryextends Comparable,V> {

8 protected K key;

9 protected V value;

10 public MyEntry(K k, V v) { key = k; value = v; }

11 public K getKey() { return key; }

12 public V getValue() { return value; }

13 public String toString() { return "(" + key + "," + value + ")"; }

14 }

15

16 public interface PriorityQueueextends Comparable,V> {

17 /** Returns the number of items in the priority queue. */

18 public int size();

19 /** Returns whether the priority queue is empty. */

20 public boolean isEmpty();

21 /** Returns but does not remove an entry with minimum key. */

22 public Entry min();

23 /** Inserts a key-value pair and return the entry created. */

24 public Entry insert(K key, V value);

25 /** Removes and returns an entry with minimum key. */

26 public Entry removeMin();

27 }

 

The main operations (insert, removeMin) can be done in O(log n) with a heap, while the other operations of the priority queue ADT (isEmpty, size, or look up the min value) are constant time. In lectures we have seen how to implement a heap using an array-based implementation.

58_Implement a min-heap.png

Figure 1: 3-way heap example

For this assignment you must implement a min-heap using a using a tree-based implementation (similar to the binary tree class we have used in tutorials). This tree should be 3-way tree, where each node needs to have (at most) three children

Note that the definition of a 3-way heap is identical to that of a binary heap, except for allowing at most three children (see Figure ). As with a binary tree, every node must have all of its children, except for the nodes at the last levels of the tree. In more detail, your task is to

1. Design a 3-way tree structure that you will use for building your heap. You can use code provided in the book. You can use any helper data structures that you need (linked lists, arrays etc.), but you must implement the tree structure yourself.

2. Implement your design for a generic 3-way heap in a class called ThreewayHeap. You will need to implement all operations (insert, removeMin, isEmpty, etc.) in the supplied interface and skeleton for the 3-way heap. In most cases the extension is straightforward from binary heaps, with certain extra cases that you need to check.

3. Include a method in your heap to print out a visual representation in DOT format (helpful for testing/debugging purposes).

4. Design test cases for your new heap structure, used as a priority queue

5. Use the provided test code on your implementation


Related Discussions:- Implement a min-heap

Sorting, Define Hashing. Store the following values in a hash table of tabl...

Define Hashing. Store the following values in a hash table of table size 11 using division method: 25, 42, 96, 101, 102, 162, and 197. In case of collision, use other hash functio

Ruby implements range of t abstract data type, Ruby implements Range of T A...

Ruby implements Range of T Abstract data type Ruby implements Range of T ADT in its Range class. Elements of carrier set are represented in Range instances by recording interna

Array and two-dimensional array, Q. Describe the term array.  How do we rep...

Q. Describe the term array.  How do we represent two-dimensional arrays in memory?  Explain how we calculate the address of an element in a two dimensional array.

Four applications or implementation of the stack, Q. Write down any four ap...

Q. Write down any four applications or implementation of the stack.                                     Ans. (i)       The Conversion of infix to postfix form (ii)

Write functions for both addition and subtraction, You will write functions...

You will write functions for both addition and subtraction of two numbers encoded in your data structure. These functions should not be hard to write. Remember how you add and subt

Spanning trees, Spanning Trees: A spanning tree of a graph, G, refer to a ...

Spanning Trees: A spanning tree of a graph, G, refer to a set of |V|-1 edges which connect all vertices of the graph. There are different representations of a graph. They are f

Decision tree, . Create a decision table that describes the movement of inv...

. Create a decision table that describes the movement of inventory

Terminology used for files structures, Given are the definitions of some im...

Given are the definitions of some important terms: 1) Field: This is an elementary data item characterized by its size, length and type. For instance, Name

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd