Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Example of Integration by Parts - Integration techniques
Some problems could need us to do integration by parts many times and there is a short hand technique that will permit us to do multiple applications of integration by parts quickly and easily.
Illustration: Evaluate the following integral.
∫ x4ex/2 dx
Solution
We start off by selecting u and dv as we always would. Though, in place of calculating du and v we put these into the following table. After that we differentiate down the column corresponding to u till we hit zero. In the column that is corresponding to dv we integrate one time for each entry in the first column. There is as well a third column that we will describe in a bit and it all time starts with a "+" and after that alternates signs as displayed below.
Here, multiply along the diagonals that are displayed in the table. In front of each product put the sign in the third column which corresponds to the u term for this product. In this type of case this would give,
∫ x4ex/2dx = (x4)(2ex/2) - (4x3)(4ex/2)+(12x2)(8ex/2)-(24x)(16x/2)+(24)(32ex/2)
= 2x4ex/2 - 16x3ex/2+96x2ex/2-384xex/2+768ex/2+c.
We've got the integral. This is much easier than writing down all the various u's and dv's that we'd have to do otherwise.
apllication in business and economics
sssssssssssss
Regression line drawn as Y=C+1075x, when x was 2, and y was 239, given that y intercept was 11. calculate the residual
Joey has 30 pages to read for history class tonight. He decided in which he would take a break while he finished reading 70% of the pages assigned. How many pages must he read befo
group
How long does it take for an amount of money P to double itself if it is invested at 8% interest compounded 4 times a year?
Assume that i) Determine all the roots of f(x) = 0. ii) Determine the value of k that makes h continuous at x = 3. iii) Using the value of k found in (ii), sh
Discontinuous Integrand- Integration Techniques Here now we need to look at the second type of improper integrals that we will be looking at in this section. These are integr
Find the value of p and q for which the system of equations represent coincident lines 2x +3y = 7, (p+q+1)x +(p+2q+2)y = 4(p+q)+1 Ans: a 1 = 2, b 1 = 3, c 1 = 7 a 2 =
x+2y^2=63 and 4x+y^2=0; Find the area of the regions enclosed by the lines and curves.
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd