Hypothesis testing of the difference between proportions, Mathematics

Assignment Help:

Hypothesis Testing Of The Difference Between Proportions

Illustration

Ken industrial producer have manufacture a perfume termed as "fianchetto." In order to test its popularity or reputation in the market, the manufacturer carried a random surveyor study in back rank city whereas 10,000 consumers were interviewed after that 7,200 demonstrated preferences. The manufacturer moved also to area Rook town where he interviewed 12,000 consumers out of that 1,0000 demonstrated preference for the product.

Required

Design a statistical test and thus use it to advise the manufacturer regarding the differences in the proportion, at 5 percent level of significance.

Solution

H0 : π1 = π2

H1 : π1 ≠ π2

The critical value for this two tailed test at 5 percent level of significance = 1.96.

 

Now Z = ¦{(P1 - P2) - (Π1 - Π2)/S(P1 - P2)}¦

But as the null hypothesis is π1 = π2, the second part of the numerator disappear that is

π1 - π2 = 0 which will usually be the case at this level.

 

Then Z = ¦ {(P1 - P2)/S (P1 - P2)}¦

Whereas:

 

Sample 1

Sample 2

Sample size

n1 = 10,000

n2 = 12,000

Sample proportion of success

P1 =0.72

P2 = 0.83

Population proportion of success.

Π1

Π2

 

Here S (P1 - P2) = √{(pq/n1) + √(pq/n1)}   

 

Whereas p = (p1n1 + p2n2)/ (n1 + n2)

And q = 1 - p;

∴ in our case

P = {10,000 (0.72) + 12,000 (0.83)}/(10,000 + 12,000)

= 84,000/22,000

= 0.78

∴ q = 0.22

S (P1 - P2) = √{(0.78(0.22)/10,000) + (0.78(12,000)/12,000)}

= 0.00894

= ¦(0.72 - 0.83)/0.00894¦  

=12.3

 

As 12.3 > 1.96, we reject the null hypothesis however accept the alternative. The differences among the proportions are statistically significant. It implies that the perfume is more popular in Rook town rather than in Back rank city.

 


Related Discussions:- Hypothesis testing of the difference between proportions

Minimum and maximum values, Minimum and Maximum Values : Several applicati...

Minimum and Maximum Values : Several applications in this chapter will revolve around minimum & maximum values of a function.  Whereas we can all visualize the minimum & maximum v

Tower of hanoi, how to create an activity of tower of hanoi

how to create an activity of tower of hanoi

Fractions, Mr. And Mrs. samuel visited Florida and purchased 120 oranges. ...

Mr. And Mrs. samuel visited Florida and purchased 120 oranges. They gave 1/4 of them to relatives, ate 1/12 of them in the hotel, and gave 1/3 of them to friends. The shipped the

Alegbra, what iz the value of x if y=56

what iz the value of x if y=56

Find out a vector that is orthogonal to the plane, A plane is illustrated b...

A plane is illustrated by any three points that are in the plane.  If a plane consists of the points P = (1, 0,0) , Q = (1,1,1) and R = (2, -1, 3) find out a vector that is orthogo

Solve 4 cos(t )= 3 on[-8, Solve 4 cos(t )= 3 on[-8,10]. Solution : Here...

Solve 4 cos(t )= 3 on[-8,10]. Solution : Here the first step is identical to the problems in the previous section. First we need to isolate the cosine on one side by itself & t

Higher-order derivatives, Higher-Order Derivatives It can be se...

Higher-Order Derivatives It can be seen that the derivative of a function is also a function. Considering f'x as a function of x, we can take the derivative

Power of iota, The next topic that we desire to discuss here is powers of i...

The next topic that we desire to discuss here is powers of i. Let's just take a look at what occurring while we start looking at many powers of i . i 1 = i

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd