Hypothesis testing about the difference between two proporti, Mathematics

Assignment Help:

Hypothesis Testing About The Difference Between Two Proportions

Hypothesis testing about the difference between two proportions is used to test the difference between the proportions of a described attribute found in two random samples.

The null hypothesis is that there is no difference between the population proportions. It means two samples are from the same population.

Hence

H0 : π1 = π2

The best estimate of the standard error of the difference of P1 and P2 is given by pooling the samples and finding the pooled sample proportions (P) thus

P =  (p1n1 + p2n2)/ (n1 + n2)

Standard error of difference between proportions

S(P1 - P2) = √{(pq/n1) + √(pq/n1)}   

       And Z = ¦ {(P1 - P2)/S (P1 - P2)}¦

Illustration

In a random sample of 100 persons obtained from village A, 60 are found to be consuming tea. In another sample of 200 persons obtained from a village B, 100 persons are found to be consuming tea. Do the data reveal significant difference among the two villages so long as the habit of taking tea is concerned?

Solution

Assume us take the hypothesis that there is no significant difference among the two villages as much as the habit of taking tea is concerned that is: π1 = π2

We are given

      P1 = 0.6;     n1 = 100

      P2 = 0.5;     n2 = 200

 

Appropriate statistic to be utilized here is described by:

 

P = (p1n1 + p2n2)/ (n1 + n2)

  = {(0.6)(100) + (0.5)(200)}/(100 + 200)

= 0.53

q = 1 - 0.53

= 0.47

S(P1 - P2) = √{(pq/n1) + √(pq/n1)}   

            = √{((0.53)(0.47)/100) + ((0.53)(0.53)/200)}

            = 0.0608

Z = ¦ {(0.6 - 0.5)/0.0608}¦

      = 1.64

Because the computed value of Z is less than the critical value of Z = 1.96 at 5 percent level of significance therefore we accept the hypothesis and conclude that there is no significant difference among in the habit of taking tea in the two villages A and B t-distribution as student's t distribution tests of hypothesis as test for small samples n < 30

For small samples n < 30, the method utilized in hypothesis testing is exactly similar to the one for large samples except that t values are used from t distribution at a specified degree of freedom v, instead of Z score, the standard error Se statistic used is different also.

Note that v = n - 1 for a single sample and n1 + n2 - 2 where two sample are involved.


Related Discussions:- Hypothesis testing about the difference between two proporti

Expertes, how to do multiplication

how to do multiplication

Factors or multiples, long ago, people decided to divide the day into units...

long ago, people decided to divide the day into units called hours. they choose 24 as the number of hours in one day. why is 24 a more convenient choice than 23 or 25?

What is the surface area of a ball with a diameter of 6 inch, The formula f...

The formula for the surface area of a sphere is 4πr 2 . What is the surface area of a ball with a diameter of 6 inches? Round to the nearest inch. (π = 3.14) If the diameter  o

Addition of like terms with same signs, Case 1: Suppose we are given...

Case 1: Suppose we are given expressions like 3abc and 7abc and asked to compute their sum. If this is the case we should not worry much. Because adding like exp

The definition of the derivative, The Definition of the Derivative : In t...

The Definition of the Derivative : In the previous section we saw that the calculation of the slope of a tangent line, the instantaneous rate of change of a function, and the ins

Stuck on this, I need help on radical notation for a homework assignment I'...

I need help on radical notation for a homework assignment I''m really confused on it. Can I get help?

Quadriatic-equations, Q. a(b - c)x^2 + b(c - a)x + c(a - b) = 0 has equal r...

Q. a(b - c)x^2 + b(c - a)x + c(a - b) = 0 has equal roots then b = ? Ans: Condition that a quadratic equation ax² + bx + c = 0 has equal roots is: Its discriminant, b² - 4ac = 0 A

How many people should she expect not to show, Laura is planning her weddin...

Laura is planning her wedding. She expects 230 people to attend the wedding, but she has been told that around 5% typically don't show. About how many people should she expect not

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd