Hypothesis testing about the difference between two proporti, Mathematics

Assignment Help:

Hypothesis Testing About The Difference Between Two Proportions

Hypothesis testing about the difference between two proportions is used to test the difference between the proportions of a described attribute found in two random samples.

The null hypothesis is that there is no difference between the population proportions. It means two samples are from the same population.

Hence

H0 : π1 = π2

The best estimate of the standard error of the difference of P1 and P2 is given by pooling the samples and finding the pooled sample proportions (P) thus

P =  (p1n1 + p2n2)/ (n1 + n2)

Standard error of difference between proportions

S(P1 - P2) = √{(pq/n1) + √(pq/n1)}   

       And Z = ¦ {(P1 - P2)/S (P1 - P2)}¦

Illustration

In a random sample of 100 persons obtained from village A, 60 are found to be consuming tea. In another sample of 200 persons obtained from a village B, 100 persons are found to be consuming tea. Do the data reveal significant difference among the two villages so long as the habit of taking tea is concerned?

Solution

Assume us take the hypothesis that there is no significant difference among the two villages as much as the habit of taking tea is concerned that is: π1 = π2

We are given

      P1 = 0.6;     n1 = 100

      P2 = 0.5;     n2 = 200

 

Appropriate statistic to be utilized here is described by:

 

P = (p1n1 + p2n2)/ (n1 + n2)

  = {(0.6)(100) + (0.5)(200)}/(100 + 200)

= 0.53

q = 1 - 0.53

= 0.47

S(P1 - P2) = √{(pq/n1) + √(pq/n1)}   

            = √{((0.53)(0.47)/100) + ((0.53)(0.53)/200)}

            = 0.0608

Z = ¦ {(0.6 - 0.5)/0.0608}¦

      = 1.64

Because the computed value of Z is less than the critical value of Z = 1.96 at 5 percent level of significance therefore we accept the hypothesis and conclude that there is no significant difference among in the habit of taking tea in the two villages A and B t-distribution as student's t distribution tests of hypothesis as test for small samples n < 30

For small samples n < 30, the method utilized in hypothesis testing is exactly similar to the one for large samples except that t values are used from t distribution at a specified degree of freedom v, instead of Z score, the standard error Se statistic used is different also.

Note that v = n - 1 for a single sample and n1 + n2 - 2 where two sample are involved.


Related Discussions:- Hypothesis testing about the difference between two proporti

Empty set or null set, Empty Set or Null Set It is a set which having ...

Empty Set or Null Set It is a set which having no elements. It is usually designated by a Greek letter Ø, or else { }. The sets Ø and { Ø } are not the same thing since the

How much does kristen have left after the money is taken out, Kristen earns...

Kristen earns $550 each week after taxes. She deposits 10% of her income in a savings account and 7% in a retirement fund. How much does Kristen have left after the money is taken

Interquarticles, (i may have spelled it wrong)but i forgot how to do them.

(i may have spelled it wrong)but i forgot how to do them.

Assignment, how to get the objective report?

how to get the objective report?

I am bad at math, i dont know how to do probobility iam so bad at it

i dont know how to do probobility iam so bad at it

Runge kutta method, As noted, Euler's method is little used in practice, as...

As noted, Euler's method is little used in practice, as there are much better ways of solving initial value problems. By better, we mean, "able to achieve a result of the same prec

Proof of various limit properties, PROOF OF VARIOUS LIMIT PROPERTIES In...

PROOF OF VARIOUS LIMIT PROPERTIES In this section we are going to prove several of the fundamental facts and properties about limits which we saw previously. Before proceeding

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd