Hypothesis testing about the difference between two proporti, Mathematics

Assignment Help:

Hypothesis Testing About The Difference Between Two Proportions

Hypothesis testing about the difference between two proportions is used to test the difference between the proportions of a described attribute found in two random samples.

The null hypothesis is that there is no difference between the population proportions. It means two samples are from the same population.

Hence

H0 : π1 = π2

The best estimate of the standard error of the difference of P1 and P2 is given by pooling the samples and finding the pooled sample proportions (P) thus

P =  (p1n1 + p2n2)/ (n1 + n2)

Standard error of difference between proportions

S(P1 - P2) = √{(pq/n1) + √(pq/n1)}   

       And Z = ¦ {(P1 - P2)/S (P1 - P2)}¦

Illustration

In a random sample of 100 persons obtained from village A, 60 are found to be consuming tea. In another sample of 200 persons obtained from a village B, 100 persons are found to be consuming tea. Do the data reveal significant difference among the two villages so long as the habit of taking tea is concerned?

Solution

Assume us take the hypothesis that there is no significant difference among the two villages as much as the habit of taking tea is concerned that is: π1 = π2

We are given

      P1 = 0.6;     n1 = 100

      P2 = 0.5;     n2 = 200

 

Appropriate statistic to be utilized here is described by:

 

P = (p1n1 + p2n2)/ (n1 + n2)

  = {(0.6)(100) + (0.5)(200)}/(100 + 200)

= 0.53

q = 1 - 0.53

= 0.47

S(P1 - P2) = √{(pq/n1) + √(pq/n1)}   

            = √{((0.53)(0.47)/100) + ((0.53)(0.53)/200)}

            = 0.0608

Z = ¦ {(0.6 - 0.5)/0.0608}¦

      = 1.64

Because the computed value of Z is less than the critical value of Z = 1.96 at 5 percent level of significance therefore we accept the hypothesis and conclude that there is no significant difference among in the habit of taking tea in the two villages A and B t-distribution as student's t distribution tests of hypothesis as test for small samples n < 30

For small samples n < 30, the method utilized in hypothesis testing is exactly similar to the one for large samples except that t values are used from t distribution at a specified degree of freedom v, instead of Z score, the standard error Se statistic used is different also.

Note that v = n - 1 for a single sample and n1 + n2 - 2 where two sample are involved.


Related Discussions:- Hypothesis testing about the difference between two proporti

Simplified radical form, If we "break up" the root into the total of two pi...

If we "break up" the root into the total of two pieces clearly we get different answers. Simplified radical form: We will simplify radicals shortly so we have to next

Differentiate inverse tangent functions, Differentiate the following functi...

Differentiate the following functions. (a) f (t ) = 4 cos -1 (t ) -10 tan -1 (t ) (b)  y = √z sin -1 ( z ) Solution (a) Not much to carry out with this one other

Computing limits , Computing Limits :In the earlier section we saw that t...

Computing Limits :In the earlier section we saw that there is a large class of function which allows us to use to calculate limits. However, there are also several limits for whi

Initial conditions to find system of equations, Solve the subsequent IVP. ...

Solve the subsequent IVP. y′′ + 11y′ + 24 y = 0 y (0) =0  y′ (0)=-7  Solution The characteristic equation is as r 2 +11r + 24 = 0 ( r + 8) ( r + 3) = 0

Stats, Instructions: 1. Write the null and alternative hypotheses. ...

Instructions: 1. Write the null and alternative hypotheses. 2. Calculate the test statistic. 3. Determine the critical value whether or not there has been an improv

Functions, find the domain of the function f(x) = (| sin inverse sin x | - ...

find the domain of the function f(x) = (| sin inverse sin x | - cos inverse cos x) ^ 1/2

Prove any prime number is irrational, 1. Show that there do not exist integ...

1. Show that there do not exist integers x and y for which 110x + 315y = 12. 2. If a and b are odd integers, prove that a 2 +b 2 is divisible by 2 but is NOT divisible by 4. H

Positive skewness-measure of central tendency, Positive Skewness - It ...

Positive Skewness - It is the tendency of a described frequency curve leaning towards the left. In a positively skewed distribution, the long tail extended to the right. In

Math 533, Project part A, part B, part C

Project part A, part B, part C

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd