Hypothesis testing about the difference between two proporti, Mathematics

Assignment Help:

Hypothesis Testing About The Difference Between Two Proportions

Hypothesis testing about the difference between two proportions is used to test the difference between the proportions of a described attribute found in two random samples.

The null hypothesis is that there is no difference between the population proportions. It means two samples are from the same population.

Hence

H0 : π1 = π2

The best estimate of the standard error of the difference of P1 and P2 is given by pooling the samples and finding the pooled sample proportions (P) thus

P =  (p1n1 + p2n2)/ (n1 + n2)

Standard error of difference between proportions

S(P1 - P2) = √{(pq/n1) + √(pq/n1)}   

       And Z = ¦ {(P1 - P2)/S (P1 - P2)}¦

Illustration

In a random sample of 100 persons obtained from village A, 60 are found to be consuming tea. In another sample of 200 persons obtained from a village B, 100 persons are found to be consuming tea. Do the data reveal significant difference among the two villages so long as the habit of taking tea is concerned?

Solution

Assume us take the hypothesis that there is no significant difference among the two villages as much as the habit of taking tea is concerned that is: π1 = π2

We are given

      P1 = 0.6;     n1 = 100

      P2 = 0.5;     n2 = 200

 

Appropriate statistic to be utilized here is described by:

 

P = (p1n1 + p2n2)/ (n1 + n2)

  = {(0.6)(100) + (0.5)(200)}/(100 + 200)

= 0.53

q = 1 - 0.53

= 0.47

S(P1 - P2) = √{(pq/n1) + √(pq/n1)}   

            = √{((0.53)(0.47)/100) + ((0.53)(0.53)/200)}

            = 0.0608

Z = ¦ {(0.6 - 0.5)/0.0608}¦

      = 1.64

Because the computed value of Z is less than the critical value of Z = 1.96 at 5 percent level of significance therefore we accept the hypothesis and conclude that there is no significant difference among in the habit of taking tea in the two villages A and B t-distribution as student's t distribution tests of hypothesis as test for small samples n < 30

For small samples n < 30, the method utilized in hypothesis testing is exactly similar to the one for large samples except that t values are used from t distribution at a specified degree of freedom v, instead of Z score, the standard error Se statistic used is different also.

Note that v = n - 1 for a single sample and n1 + n2 - 2 where two sample are involved.


Related Discussions:- Hypothesis testing about the difference between two proporti

MAT201, #There is a balance of $1,234 and this person receive a refund chec...

#There is a balance of $1,234 and this person receive a refund check in the amount of $25 with her paycheck that was deposited into her account for $1500 which made her balance $27

Tied rankings, Tied Rankings A slight adjustment to the formula is mad...

Tied Rankings A slight adjustment to the formula is made if several students tie and have the similar ranking the adjustment is: (t 3 - t)/12 Whereas t = number of tied

Interpolation and extrapolation, Interpolation is a method of s...

Interpolation is a method of statistical estimation and the word literally means 'making insertions'. Let us consider a well-known situation whi

Area of a circle, How do you find the area of a circle given the diameter?

How do you find the area of a circle given the diameter?

Introduction to knowing your maths learner, INTRODUCTION : The other day I...

INTRODUCTION : The other day I overheard 6-year-old Ahmed explaining to his older sister about why swallowing the seeds of an orange is harmful. He said, "The seed will become a p

Scalar equation of plane - three dimensional spaces, Scalar Equation of Pla...

Scalar Equation of Plane A little more helpful form of the equations is as follows. Begin with the first form of the vector equation and write a vector for the difference. {

Ogive, How to construct a histogram into an ogive

How to construct a histogram into an ogive

Introduction to mathematics, We know that one has to deal with ...

We know that one has to deal with numbers in day-to-day life irrespective of his inclination and field of work. Also one cannot refute the fact

Geometric interpretation of the cross product, Geometric Interpretation of ...

Geometric Interpretation of the Cross Product There is as well a geometric interpretation of the cross product.  Firstly we will let θ be the angle in between the two vectors a

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd