Hypothesis testing about the difference between two proporti, Mathematics

Assignment Help:

Hypothesis Testing About The Difference Between Two Proportions

Hypothesis testing about the difference between two proportions is used to test the difference between the proportions of a described attribute found in two random samples.

The null hypothesis is that there is no difference between the population proportions. It means two samples are from the same population.

Hence

H0 : π1 = π2

The best estimate of the standard error of the difference of P1 and P2 is given by pooling the samples and finding the pooled sample proportions (P) thus

P =  (p1n1 + p2n2)/ (n1 + n2)

Standard error of difference between proportions

S(P1 - P2) = √{(pq/n1) + √(pq/n1)}   

       And Z = ¦ {(P1 - P2)/S (P1 - P2)}¦

Illustration

In a random sample of 100 persons obtained from village A, 60 are found to be consuming tea. In another sample of 200 persons obtained from a village B, 100 persons are found to be consuming tea. Do the data reveal significant difference among the two villages so long as the habit of taking tea is concerned?

Solution

Assume us take the hypothesis that there is no significant difference among the two villages as much as the habit of taking tea is concerned that is: π1 = π2

We are given

      P1 = 0.6;     n1 = 100

      P2 = 0.5;     n2 = 200

 

Appropriate statistic to be utilized here is described by:

 

P = (p1n1 + p2n2)/ (n1 + n2)

  = {(0.6)(100) + (0.5)(200)}/(100 + 200)

= 0.53

q = 1 - 0.53

= 0.47

S(P1 - P2) = √{(pq/n1) + √(pq/n1)}   

            = √{((0.53)(0.47)/100) + ((0.53)(0.53)/200)}

            = 0.0608

Z = ¦ {(0.6 - 0.5)/0.0608}¦

      = 1.64

Because the computed value of Z is less than the critical value of Z = 1.96 at 5 percent level of significance therefore we accept the hypothesis and conclude that there is no significant difference among in the habit of taking tea in the two villages A and B t-distribution as student's t distribution tests of hypothesis as test for small samples n < 30

For small samples n < 30, the method utilized in hypothesis testing is exactly similar to the one for large samples except that t values are used from t distribution at a specified degree of freedom v, instead of Z score, the standard error Se statistic used is different also.

Note that v = n - 1 for a single sample and n1 + n2 - 2 where two sample are involved.


Related Discussions:- Hypothesis testing about the difference between two proporti

Evalute right-hand limit, Evaluate following limits. Solution ...

Evaluate following limits. Solution Let's begin with the right-hand limit.  For this limit we have, x > 4  ⇒          4 - x 3   = 0      also, 4 - x → 0  as x → 4

Define the correlations, A retention counselor at a state university believ...

A retention counselor at a state university believes that freshman year success is related to high school standard tests in math and reading, and in the number of credits the stude

Class 10, chapter permutation & combination ex :4.6

chapter permutation & combination ex :4.6

Shares and dividend, a man in rested rupee 800 is buying rupee 5 shares and...

a man in rested rupee 800 is buying rupee 5 shares and then are selling at premium of rupee 1.15. He sells all the shares.find profit

Differential equations, Verify Liouville''''s formula for y "-y" - y'''' + ...

Verify Liouville''''s formula for y "-y" - y'''' + y = 0 in (0, 1) ?

Substitution rule for definite integrals, Substitution Rule for Definite In...

Substitution Rule for Definite Integrals Now we need to go back and revisit the substitution rule as it also applies to definite integrals.  At some level there actually isn't

How to subtract fractions involving negative numbers, Q. How to Subtract fr...

Q. How to Subtract fractions involving negative numbers? Ans. This is the same as adding them, but just remember the rule that two negatives on the same fraction cancel ou

Sketch the feasible region, Sketch the feasible region for the following se...

Sketch the feasible region for the following set of constraints: 3y - 2x  ≥ 0 y + 8x  ≤  53 y - 2x  ≤  2 x  ≥ 3. Then find the maximum and minimum values of the objective

Plane and solid mensuration, the area of a triangle is 20 and its base is 1...

the area of a triangle is 20 and its base is 16. Find the base of a similar triangle whose area is 45. Given is a regular pentagon. Find the measure of angle LHIK.

Draw the direction field, Draw the direction field for the subsequent diffe...

Draw the direction field for the subsequent differential equation. Draw the set of integral curves for this differential equation.   Solution:  y′ = y - x  To draw direct

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd