How to solve the checking problem, Theory of Computation

Assignment Help:

The objective of the remainder of this assignment is to get you thinking about the problem of recognizing strings given various restrictions to your model of computation. We will work with whatever representation of an algorithm you are comfortable with (C or Pascal or, perhaps, some form of pseudo-code-just make sure it is unambiguous). Don't get too carried away with this. You only have a short time to work on it. The goal is primarily to think about this stu?, not to agonize over it. Whatever you do, don't turn it into a programming assignment; running code is not a bonus in this case.

In all of the problems we will assume the same basic machine:

• The program is read-only (it can't be modi?ed, you might even think of it as being hard-wired).

• For the sake of uniformity, let's assume the following methods for accessing the input:

- input(), a function that returns the current input character. You can use this in forms like

i ← input(), or

if (input() = ‘a' ) then . . . , or

push(input()).

This does not consume the character; any subsequent calls to input() prior to a call to next() will return the same character. You may assume that input() returns a unique value EOF if all of the input has been consumed.

- next(), a function that bumps to the next position in the input.

This discards the previous character which cannot be re-read. You can either assume that it returns nothing or that it returns TRUE in the case the input is not at EOF and FALSE otherwise.


Related Discussions:- How to solve the checking problem

Qbasic, Ask question #Minimum 100 words accepte

Ask question #Minimum 100 words accepte

#turing machine, #can you solve a problem of palindrome using turing machin...

#can you solve a problem of palindrome using turing machine with explanation and diagrams?

Class of recognizable languages, Proof (sketch): Suppose L 1 and L 2 are ...

Proof (sketch): Suppose L 1 and L 2 are recognizable. Then there are DFAs A 1 = (Q,Σ, T 1 , q 0 , F 1 ) and A 2 = (P,Σ, T 2 , p 0 , F 2 ) such that L 1 = L(A 1 ) and L 2 = L(

Regular languages, LTO was the closure of LT under concatenation and Boolea...

LTO was the closure of LT under concatenation and Boolean operations which turned out to be identical to SF, the closure of the ?nite languages under union, concatenation and compl

#dfa, Give DFA''s accepting the following languages over the alphabet {0,1}...

Give DFA''s accepting the following languages over the alphabet {0,1}: i. The set of all strings beginning with a 1 that, when interpreted as a binary integer, is a multiple of 5.

Pendulum Swings, how many pendulum swings will it take to walk across the c...

how many pendulum swings will it take to walk across the classroom?

Chomsky-schutzenberger, The upper string r ∈ Q+ is the sequence of states v...

The upper string r ∈ Q+ is the sequence of states visited by the automaton as it scans the lower string w ∈ Σ*. We will refer to this string over Q as the run of A on w. The automa

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd