How to solve the checking problem, Theory of Computation

Assignment Help:

The objective of the remainder of this assignment is to get you thinking about the problem of recognizing strings given various restrictions to your model of computation. We will work with whatever representation of an algorithm you are comfortable with (C or Pascal or, perhaps, some form of pseudo-code-just make sure it is unambiguous). Don't get too carried away with this. You only have a short time to work on it. The goal is primarily to think about this stu?, not to agonize over it. Whatever you do, don't turn it into a programming assignment; running code is not a bonus in this case.

In all of the problems we will assume the same basic machine:

• The program is read-only (it can't be modi?ed, you might even think of it as being hard-wired).

• For the sake of uniformity, let's assume the following methods for accessing the input:

- input(), a function that returns the current input character. You can use this in forms like

i ← input(), or

if (input() = ‘a' ) then . . . , or

push(input()).

This does not consume the character; any subsequent calls to input() prior to a call to next() will return the same character. You may assume that input() returns a unique value EOF if all of the input has been consumed.

- next(), a function that bumps to the next position in the input.

This discards the previous character which cannot be re-read. You can either assume that it returns nothing or that it returns TRUE in the case the input is not at EOF and FALSE otherwise.


Related Discussions:- How to solve the checking problem

Third model of computation, Computer has a single LIFO stack containing ?xe...

Computer has a single LIFO stack containing ?xed precision unsigned integers (so each integer is subject to over?ow problems) but which has unbounded depth (so the stack itself nev

Concatenation, We saw earlier that LT is not closed under concatenation. If...

We saw earlier that LT is not closed under concatenation. If we think in terms of the LT graphs, recognizing the concatenation of LT languages would seem to require knowing, while

Abstract model for an algorithm solving a problem, These assumptions hold f...

These assumptions hold for addition, for instance. Every instance of addition has a unique solution. Each instance is a pair of numbers and the possible solutions include any third

Possibility of recognizing the palindrome language, Computer has a single F...

Computer has a single FIFO queue of ?xed precision unsigned integers with the length of the queue unbounded. You can use access methods similar to those in the third model. In this

Computations of sl automata, We will specify a computation of one of these ...

We will specify a computation of one of these automata by specifying the pair of the symbols that are in the window and the remainder of the string to the right of the window at ea

Ogdens lemma, proof ogdens lemma .with example i am not able to undestand ...

proof ogdens lemma .with example i am not able to undestand the meaning of distinguished position .

Construct a recognizer, Let L1 and L2 be CGF. We show that L1 ∩ L2 is CFG t...

Let L1 and L2 be CGF. We show that L1 ∩ L2 is CFG too. Let M1 be a decider for L1 and M2 be a decider for L2 . Consider a 2-tape TM M: "On input x: 1. copy x on the sec

Exhaustive search, A problem is said to be unsolvable if no algorithm can s...

A problem is said to be unsolvable if no algorithm can solve it. The problem is said to be undecidable if it is a decision problem and no algorithm can decide it. It should be note

Finite state automata, Since the signi?cance of the states represented by t...

Since the signi?cance of the states represented by the nodes of these transition graphs is arbitrary, we will allow ourselves to use any ?nite set (such as {A,B,C,D,E, F,G,H} or ev

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd