How to solve systems of equations, Mathematics

Assignment Help:

How to solve Systems of Equations ?

There's a simple method that you can use to solve most of the systems of equations you'll encounter in Calculus. It's called the "substitution method."

This is not the only method - and often, it's not the easiest either. But it's something you can usually fall back on when other things don't work. It's also the easiest to learn, in case you've been having trouble learning other methods.

Step 1. Solve one of the equations for one of the variables.
Step 2. By substitution, eliminate that variable from the other equations.

Now you have fewer equations, and fewer variables . Repeat steps 1 and 2 until you have only one equation and one variable.

Step 3. Solve that equation with one variable. Now you know the value of that one variable.
Step 4. Go back to the other solved equations to find values for the other variables.
Step 5. Check your work!

To demonstrate, let's solve this system of equations:

x2 + y = 3 (2a)

15x + 3y = 21 (2b)

Let's solve equation (2a) for y (Step 1).

y = 3 - x2

Since y is equal to 3 - x2 , we can substitute 3 - x2 for y wherever y occurs. Let's make this substitution in equation (2b) (Step 2):

15x + 3(3 - x2 ) = 21.

Notice what we've accomplished: we have an equation with only one variable in it. Now we solve for that variable (Step 3):

15x + 9 - 3x2 = 21

-3x2 + 15x - 12 = 0

-3(x2 - 5x + 4) = 0

-3(x - 4)(x - 1) = 0

x = 4 or x = 1.

Now, Step 4: use these values for x to solve (2a) for the other variable y:

x2 + y = 3

(4) 2 + y = 3 or (1) 2 + y = 3

16 + y = 3 or 1 + y = 3

y = -13 or y = 2.

So, the possible solutions are

A. x = 4, y = -13

B. x = 1, y = 2.

Often these are written simply as (4, -13) and (1, 2).

Step 5: Check these solutions with the original equations (2a) and (2b). For example, let's check the possible solution (4, -13) with equation (2a):

x2 + y = 3

(4)2 + (- 13) = 3

16 - 13 = 3

which is true. You can do the rest of the checks yourself.


Related Discussions:- How to solve systems of equations

Discontinuous integrand- integration techniques, Discontinuous Integrand- I...

Discontinuous Integrand- Integration Techniques Here now we need to look at the second type of improper integrals that we will be looking at in this section.  These are integr

How far is balloon from the shore, Steve Fossett is going the shores of Aus...

Steve Fossett is going the shores of Australia on the ?rst successful solo hot air balloon ride around the world. His balloon, the Bud Light Spirit of Freedom, is being escorted

Basic algebraic properties of real numbers, These can be expressed in...

These can be expressed in terms of two fundamental operations of addition and multiplication. If a, b and c are any three real numbers, then;     1.

Real and distinct roots, Now we start solving constant linear, coefficient ...

Now we start solving constant linear, coefficient and second order differential and homogeneous equations. Thus, let's recap how we do this from the previous section. We start alon

Whole numbers, Observe that natural numbers do not have a zero....

Observe that natural numbers do not have a zero. This shortcoming is made good when we consider the set of whole numbers. The set of whole numbe

Examples of linear equation, Examples of Linear Equation Please provid...

Examples of Linear Equation Please provide me some Examples of Linear Equation?

Series - convergence or divergence, Series - Convergence/Divergence In ...

Series - Convergence/Divergence In the earlier section we spent some time getting familiar with series and we briefly explained convergence and divergence.  Previous to worryin

Argument, what is the difference between argument and principle argument

what is the difference between argument and principle argument

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd