How to solve systems of equations, Mathematics

Assignment Help:

How to solve Systems of Equations ?

There's a simple method that you can use to solve most of the systems of equations you'll encounter in Calculus. It's called the "substitution method."

This is not the only method - and often, it's not the easiest either. But it's something you can usually fall back on when other things don't work. It's also the easiest to learn, in case you've been having trouble learning other methods.

Step 1. Solve one of the equations for one of the variables.
Step 2. By substitution, eliminate that variable from the other equations.

Now you have fewer equations, and fewer variables . Repeat steps 1 and 2 until you have only one equation and one variable.

Step 3. Solve that equation with one variable. Now you know the value of that one variable.
Step 4. Go back to the other solved equations to find values for the other variables.
Step 5. Check your work!

To demonstrate, let's solve this system of equations:

x2 + y = 3 (2a)

15x + 3y = 21 (2b)

Let's solve equation (2a) for y (Step 1).

y = 3 - x2

Since y is equal to 3 - x2 , we can substitute 3 - x2 for y wherever y occurs. Let's make this substitution in equation (2b) (Step 2):

15x + 3(3 - x2 ) = 21.

Notice what we've accomplished: we have an equation with only one variable in it. Now we solve for that variable (Step 3):

15x + 9 - 3x2 = 21

-3x2 + 15x - 12 = 0

-3(x2 - 5x + 4) = 0

-3(x - 4)(x - 1) = 0

x = 4 or x = 1.

Now, Step 4: use these values for x to solve (2a) for the other variable y:

x2 + y = 3

(4) 2 + y = 3 or (1) 2 + y = 3

16 + y = 3 or 1 + y = 3

y = -13 or y = 2.

So, the possible solutions are

A. x = 4, y = -13

B. x = 1, y = 2.

Often these are written simply as (4, -13) and (1, 2).

Step 5: Check these solutions with the original equations (2a) and (2b). For example, let's check the possible solution (4, -13) with equation (2a):

x2 + y = 3

(4)2 + (- 13) = 3

16 - 13 = 3

which is true. You can do the rest of the checks yourself.


Related Discussions:- How to solve systems of equations

Example of adding signed numbers, Example of Adding signed numbers: E...

Example of Adding signed numbers: Example: (2) + (-4) =      Solution: Start with 2 and count 4 whole numbers to the left. Thus: (2) + (-4) = -2 Adding

Obtain the number of significant modes, On the Assessment page for the modu...

On the Assessment page for the module Moodle site you will find five frequency response functions for the frequency range 20 to 100 Hz in the EXCEL spreadsheet "FRF_Data". These a

Simplifying rational expressions, I need to simple this rational expression...

I need to simple this rational expression, but I can''t figure out how. (x+1)/(x^2-2x-35)+(x^2+x-12)/(x^2-2x-24)(x^2-4x-12)/(x^2+2x-15)

What is her weekly paycheck assuming there are deductions, Kyra's weekly wa...

Kyra's weekly wages are $895. A Social Security tax of 7.51% and a State Disability Insurance of 1.2% are taken out of her wages. What is her weekly paycheck, assuming there are no

Multiple, what number does not belong 43,47,53,59,65,67

what number does not belong 43,47,53,59,65,67

Evaluate the perimeter of the plot of land, Evaluate the perimeter of the p...

Evaluate the perimeter of the plot of land. a. 260 m b. 340 m c. 360 m d. 320 m To evaluate the perimeter, we must know the length of all sides. According to the dia

Find out all the critical points for the function, Find out all the critica...

Find out all the critical points for the function. Solution To determine the derivative it's probably simple to do a little simplification previous to we in fact diffe

Show that 3cos-4cos3 = 0, If sin? =  1/2 , show that 3cos?-4cos 3 ? = 0. ...

If sin? =  1/2 , show that 3cos?-4cos 3 ? = 0. Ans:    Sin ? = ½ ⇒ ? = 30 o Substituting in place of ? =30 o . We get 0.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd