How to solve inequalities, Mathematics

Assignment Help:

How to Solve Inequalities ?

Now that you have learned so much about solving equations, you're ready to solve inequalities.

You might think that since an equation looks like this: x - 4 = 10 an inequality would look like this: x - 4 ≠10

In the formal sense, x - 4 ≠10 is an inequality.
In algebra, inequalities look exactly like equations, but instead of ‘=' (or ‘≠' ), you'll see:
< less than > greater than
≤less than or equal ≥greater than or equal

Let's solve the inequality x - 4 < 10.
To do so, consider how we solve x - 4 = 10.
We can use the same steps to isolate x and solve the inequality x - 4 < 10.
x - 4 < 10
x - 4 + 4 < 10 + 4
x < 14

Try different values for x. See if all values less than 14 make the inequality a true statement. Then, check if values greater than or equal to 14 make the inequality false. Finally, replace ‘<' with ‘≤ ' and solve x - 4 ≤10. How does the solution to x - 4 < 10 differ from the solution to x - 4 ≤10?

Now see if you can solve these inequalities: 2x + 4 > -8 and 2x + 4 ≥ -8

By adding the same number to both sides or subtracting the same number from both sides of an inequality, you do not change the balance of the inequality in any way.

Just to make sure this is so, look at the examples below and then make up some of your own until you're satisfied.

-4 < -3

    -4 + 4 < -3 + 4 

0 < 1

y - 5 ≤1

y - 5 + 6 ≤ + 6

y + 1 ≤7

1 ≥-2

1 - 2 ≥-2 - 2

-1 ≥-4

Multiplication and division

For equations, you can multiply both sides by any non-zero number, positive or negative, without changing the equality.
This is not necessarily so for inequalities.

See if you can find a pattern in the following examples.

-4 < 4

-4 /(-2) < 4 /(-2)

2 < -2

  -y ≤1

-y *(-1)  ≤1 *(-1)

    y *-1

1 ≥-2

-5 *1 ≥-5 *(-2)

-5 *10

-4 < 4

-4 /4 < 4 /4

-1 < 1

y ≤12

y *2 ≤12 *2

  y ≤24

1 ≥-2

  5 *1 ≥5 *(-2)

  5 ≥-10


What's happening here? In each case, we perform exactly the same operation on both sides of the inequality, just as we do with equations. However, in some cases, the result is incorrect. The results of the examples in the bottom row of the table are all valid. In these cases, we have multiplied or divided by a positive quantity. The results in the top row are all invalid. In these cases, we have multiplied or divided by a negative quantity.

Why do you think it makes a difference whether you multiply by a negative rather than a positive number?
When you multiply or divide a quantity by a negative number, you change its sign. When you multiply or divide both sides of an inequality by a negative number, the direction of the inequality changes.


Related Discussions:- How to solve inequalities

Advantages and limitations of game theory, Advantages And Limitations Of Ga...

Advantages And Limitations Of Game Theory Advantage Game theory assists us to learn how to approach and understand a conflict condition and to develop the decision making

Phase transformations in binary system, Get the Delta H (Enthalpy) and Delt...

Get the Delta H (Enthalpy) and Delta V (Volume) of the both components below and compare by ratio.  You need to use clapeyron equation and also need to draw the graphs. S A LG

Kotler, Marketing management,Analysis,planning and implementation

Marketing management,Analysis,planning and implementation

Interpretations of the derivative , Interpretations of the Derivative : ...

Interpretations of the Derivative : Before moving on to the section where we study how to calculate derivatives by ignoring the limits we were evaluating in the earlier secti

Bussiness, How do these websites help the company strengthen its relationsh...

How do these websites help the company strengthen its relationships with its stakeholders? List the website(s) that you previewed and give examples to support your answers. Who are

Decimal representations of some basic angles, Decimal representations of so...

Decimal representations of some basic angles: As a last quick topic let's note that it will, on occasion, be useful to remember the decimal representations of some basic angles. S

Rules of logarithms, Rule 1 The logarithm of 1 to any base is 0. Pro...

Rule 1 The logarithm of 1 to any base is 0. Proof We know that any number raised to zero equals 1. That is, a 0 = 1, where "a" takes any value. Therefore, the loga

Geometry, how you know that your first quadrilateral is an isosceles trapez...

how you know that your first quadrilateral is an isosceles trapezoid

Eigenvalues and eigenvectors, Review: Systems of Equations - The tradition...

Review: Systems of Equations - The traditional initial point for a linear algebra class. We will utilize linear algebra techniques to solve a system of equations. Review: Matr

Algebra ii, How do you graph a hyperbola?

How do you graph a hyperbola?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd