How to solve inequalities, Mathematics

Assignment Help:

How to Solve Inequalities ?

Now that you have learned so much about solving equations, you're ready to solve inequalities.

You might think that since an equation looks like this: x - 4 = 10 an inequality would look like this: x - 4 ≠10

In the formal sense, x - 4 ≠10 is an inequality.
In algebra, inequalities look exactly like equations, but instead of ‘=' (or ‘≠' ), you'll see:
< less than > greater than
≤less than or equal ≥greater than or equal

Let's solve the inequality x - 4 < 10.
To do so, consider how we solve x - 4 = 10.
We can use the same steps to isolate x and solve the inequality x - 4 < 10.
x - 4 < 10
x - 4 + 4 < 10 + 4
x < 14

Try different values for x. See if all values less than 14 make the inequality a true statement. Then, check if values greater than or equal to 14 make the inequality false. Finally, replace ‘<' with ‘≤ ' and solve x - 4 ≤10. How does the solution to x - 4 < 10 differ from the solution to x - 4 ≤10?

Now see if you can solve these inequalities: 2x + 4 > -8 and 2x + 4 ≥ -8

By adding the same number to both sides or subtracting the same number from both sides of an inequality, you do not change the balance of the inequality in any way.

Just to make sure this is so, look at the examples below and then make up some of your own until you're satisfied.

-4 < -3

    -4 + 4 < -3 + 4 

0 < 1

y - 5 ≤1

y - 5 + 6 ≤ + 6

y + 1 ≤7

1 ≥-2

1 - 2 ≥-2 - 2

-1 ≥-4

Multiplication and division

For equations, you can multiply both sides by any non-zero number, positive or negative, without changing the equality.
This is not necessarily so for inequalities.

See if you can find a pattern in the following examples.

-4 < 4

-4 /(-2) < 4 /(-2)

2 < -2

  -y ≤1

-y *(-1)  ≤1 *(-1)

    y *-1

1 ≥-2

-5 *1 ≥-5 *(-2)

-5 *10

-4 < 4

-4 /4 < 4 /4

-1 < 1

y ≤12

y *2 ≤12 *2

  y ≤24

1 ≥-2

  5 *1 ≥5 *(-2)

  5 ≥-10


What's happening here? In each case, we perform exactly the same operation on both sides of the inequality, just as we do with equations. However, in some cases, the result is incorrect. The results of the examples in the bottom row of the table are all valid. In these cases, we have multiplied or divided by a positive quantity. The results in the top row are all invalid. In these cases, we have multiplied or divided by a negative quantity.

Why do you think it makes a difference whether you multiply by a negative rather than a positive number?
When you multiply or divide a quantity by a negative number, you change its sign. When you multiply or divide both sides of an inequality by a negative number, the direction of the inequality changes.


Related Discussions:- How to solve inequalities

How many hours will it take for them to be 822 miles apart, Two trains leav...

Two trains leave the same city at the same time, one going east and the other going west. If one train is traveling at 65 mph and the other at 72 mph, how many hours will it take f

Definition of the laplace transform, Definition Assume that f(t) is a ...

Definition Assume that f(t) is a piecewise continuous function. The Laplace transform of f(t) is denoted L{ f (t )} and defined by, There is an optional notation for L

What is her commission if she sells a $359, A real estate agent makes a 1.5...

A real estate agent makes a 1.5% commission on her sales. What is her commission if she sells a $359,000 house? Multiply $359,000 by the decimal equivalent of 1.5% (0.015) to ?

value of integration , what is the value of integration limit n-> infinity...

what is the value of integration limit n-> infinity [n!/n to the power n]to the power 1/n Solution)  limit n-->inf.    [1 + (n!-n^n)/n^n]^1/n = e^ limit n-->inf.    {(n!-n^n)

Limit properties, Limit Properties :  The time has almost come for us t...

Limit Properties :  The time has almost come for us to in fact compute some limits.  Though, before we do that we will require some properties of limits which will make our lif

Arithmetic/geometric sequences and binomial expansion, find s10 for the ari...

find s10 for the arithmetic sequenxe inwhich a1=5 and a10=68

Find the maxima and minima - equal pi, 1) Find the maxima and minima of f(x...

1) Find the maxima and minima of f(x,y,z) = 2x + y -3z subject to the constraint 2x^2+y^2+2z^2=1 2) Compute the work done by the force ?eld F(x,y,z) = x^2I + y j +y k in moving

Twelve coworkers go out how many slices will each person get, Twelve cowork...

Twelve coworkers go out for lunch together and sequence three pizzas. Each pizza is cut within eight slices. If each person gets the similar number of slices, how many slices will

Augmented matrix, Consider the following system of linear equations. X 1...

Consider the following system of linear equations. X 1 +x 3 +x 4 = 2 X 1 +x 2 +x 3 = 6 X 2 +x 3 +x 4 = 3 X 1 +x 2 +x 4 = 0  (a) Write out the augmented matrix fo

Negative function , Negative function : Several functions are not positive...

Negative function : Several functions are not positive however.  Consider the case of f (x ) =x 2 - 4 on [0,2].  If we utilizes n = 8 and the midpoints for the rectangle height w

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd