How to solve inequalities, Mathematics

Assignment Help:

How to Solve Inequalities ?

Now that you have learned so much about solving equations, you're ready to solve inequalities.

You might think that since an equation looks like this: x - 4 = 10 an inequality would look like this: x - 4 ≠10

In the formal sense, x - 4 ≠10 is an inequality.
In algebra, inequalities look exactly like equations, but instead of ‘=' (or ‘≠' ), you'll see:
< less than > greater than
≤less than or equal ≥greater than or equal

Let's solve the inequality x - 4 < 10.
To do so, consider how we solve x - 4 = 10.
We can use the same steps to isolate x and solve the inequality x - 4 < 10.
x - 4 < 10
x - 4 + 4 < 10 + 4
x < 14

Try different values for x. See if all values less than 14 make the inequality a true statement. Then, check if values greater than or equal to 14 make the inequality false. Finally, replace ‘<' with ‘≤ ' and solve x - 4 ≤10. How does the solution to x - 4 < 10 differ from the solution to x - 4 ≤10?

Now see if you can solve these inequalities: 2x + 4 > -8 and 2x + 4 ≥ -8

By adding the same number to both sides or subtracting the same number from both sides of an inequality, you do not change the balance of the inequality in any way.

Just to make sure this is so, look at the examples below and then make up some of your own until you're satisfied.

-4 < -3

    -4 + 4 < -3 + 4 

0 < 1

y - 5 ≤1

y - 5 + 6 ≤ + 6

y + 1 ≤7

1 ≥-2

1 - 2 ≥-2 - 2

-1 ≥-4

Multiplication and division

For equations, you can multiply both sides by any non-zero number, positive or negative, without changing the equality.
This is not necessarily so for inequalities.

See if you can find a pattern in the following examples.

-4 < 4

-4 /(-2) < 4 /(-2)

2 < -2

  -y ≤1

-y *(-1)  ≤1 *(-1)

    y *-1

1 ≥-2

-5 *1 ≥-5 *(-2)

-5 *10

-4 < 4

-4 /4 < 4 /4

-1 < 1

y ≤12

y *2 ≤12 *2

  y ≤24

1 ≥-2

  5 *1 ≥5 *(-2)

  5 ≥-10


What's happening here? In each case, we perform exactly the same operation on both sides of the inequality, just as we do with equations. However, in some cases, the result is incorrect. The results of the examples in the bottom row of the table are all valid. In these cases, we have multiplied or divided by a positive quantity. The results in the top row are all invalid. In these cases, we have multiplied or divided by a negative quantity.

Why do you think it makes a difference whether you multiply by a negative rather than a positive number?
When you multiply or divide a quantity by a negative number, you change its sign. When you multiply or divide both sides of an inequality by a negative number, the direction of the inequality changes.


Related Discussions:- How to solve inequalities

Karatsubas algorithm, Consider the following two polynomials in F 17 [x] ...

Consider the following two polynomials in F 17 [x]   (a) Use Karatsuba's algorithm, by hand, to multiply these two polynomials. (b) Use the FFT algorithm, by hand, to

Integral test- harmonic series, Integral Test- Harmonic Series In ha...

Integral Test- Harmonic Series In harmonic series discussion we said that the harmonic series was a divergent series.  It is now time to demonstrate that statement.  This pr

Example for introducing counting, Four-year-old Mariamma was reciting numbe...

Four-year-old Mariamma was reciting number names - some of them in order, and others randomly. The child's aunt, sitting nearby, asked her, "Can you write 'two'?" She said she coul

Developing an understanidng of multiplication, DEVELOPING AN UNDERSTANIDNG ...

DEVELOPING AN UNDERSTANIDNG OF MULTIPLICATION :  The most important aspect of knowing multiplication is to understand what it means and where it is applied. It needs to be first i

Integration of sin ³a.cos ³a , writing sin 3 a.cos 3 a = sin 3 a.cos 2 a.co...

writing sin 3 a.cos 3 a = sin 3 a.cos 2 a.cosa = sin 3 a.(1-sin 2 a).cosa put sin a as then cos a da = dt integral(t 3 (1-t 2 ).dt = integral of t 3 - t 5 dt = t 4 /4-t 6 /6

Assemble the coefficient matrix and solve the linear system, Solve discrete...

Solve discrete harmonic mapping of a given surface patch (suppose the surface is genus-0 and with one boundary) 1. Map the boundary loop onto a unit rectangle using chord-length

Rounding, i need somehelp i am not the sharpest in the pack so plz help me ...

i need somehelp i am not the sharpest in the pack so plz help me thank you i hope you do

Simple harmonic motion, prove that the composition of two simple harmonic o...

prove that the composition of two simple harmonic of the same period and in the same straight line is also a simple harmonic motion of the same period.

Simple interest, find the simple interest on Rs. 68,000 at 50/3 per annum f...

find the simple interest on Rs. 68,000 at 50/3 per annum for 9 month

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd