How to make equations of conics easier to read, Mathematics

Assignment Help:

How to Make Equations of Conics Easier to Read ?

If you want to graph a conic sections, first you need to make the equation easy to read. For example, say you have the equation

4x2 + 64 = 40x + 9y2 .
You know that it's a conic section, because it's second-degree- in fact, if you've read the rest of this chapter, you can even figure out that it's a hyperbola. But it's not obvious what the graph looks like. Where's the center for example?

To make this equation easier to read, we need to get rid of the first-degree terms, by completing the square!

For example, the term - 40 x is a first-degree term. Let's get rid of it. Move it over to the left with the other x term (while we're at it, we'll go ahead and move all the variable to the left):
4x2 - 40x - 9y2 = -64.
Important: factor out the coefficient of x2 (from the x terms only) before attempting to complete the square!

4(x2 -10x) - 9y2 =-64.
Now, complete the square inside the parentheses.

4(x2 - 10x)-9y2 = -64
4((x-5) 2 - 25) - 9y2 = -64

and re-distribute the 4 (pay special attention to the way the 4 gets distributed to the new constant, -25, created when we completed the square!).

4(x - 5) 2 - 100 - 9y2 = -64
Then combine the constant terms:

4(x - 5) 2 - 9y2 = 36.
For this equations, there's no need to complete the square for the y terms, because there is no first-degree y term. Now divide both sides by the constant term:

(x- 5)2/9 -y2 /4 = 1

and finally, take the square roots of the constant factors 9 and 4 to bring them under the square symbol:

(x-5/3)2 -(y/2)2 = 1 (1)

I know, I know! You're saying, "what in the world is all this for?!" Well, take a look at the result (equation 1). It's in a very simple form. There are only three terms. One of the terms has only the variable x and is squared; same for the variable y. The constant term is just 1. In fact, the equation has been made as close as possible to the equation of the "standard" hyperbola,

x2 - y2 = 1,

except for some translation and scaling factors. (The graph is translated in the x-direction a distance 5, and is scaled in the x and y directions by factors of 3 and 2 respectively. I'm deliberately not showing you the graph here, because I want you to look at the equations!)


Related Discussions:- How to make equations of conics easier to read

Triangle treat, what letters to fill in the boxes

what letters to fill in the boxes

Find the interval of validity, Solve the subsequent IVP and find the interv...

Solve the subsequent IVP and find the interval of validity for the solution. y' + (4/x) y = x 3 y 2 ,       y(2) = - 1,  x > 0 Solution Thus, the first thing that we re

Farmer counting grasshoppers in his fields, Farmer counting grasshoppers in...

Farmer counting grasshoppers in his fields, probably not normally distributed due to growing conditions. After various rows the mean number of grasshoppers is 57 SD 12. What will b

Geography, How do you find the maxima or minima on a parabolic graph?

How do you find the maxima or minima on a parabolic graph?

Prove which divide these sides in the ratio 2: 1, In a right triangle ABC, ...

In a right triangle ABC, right angled at C, P and Q are points of the sides CA and CB respectively, which divide these sides in the ratio 2: 1. Prove that  9AQ 2 = 9AC 2 +4BC 2

Show that the function f is one-one but not onto, Consider the function f: ...

Consider the function f: N → N, where N is the set of natural numbers, defined by f(n) = n 2 +n+1. Show that the function f is one-one but not onto. Ans: To prove that f is one

How much can they deduct from childcare expenses, A family may deduct 24% o...

A family may deduct 24% of their childcare expenses from their income tax owed. If a family had $1,345 in childcare expenses, how much can they deduct? Find out 24% of $1,345 b

Geometry, Awhat is polygonesk question #Minimum 100 words accepted#

Awhat is polygonesk question #Minimum 100 words accepted#

Proof for properties of dot product, Proof for Properties of Dot Product ...

Proof for Properties of Dot Product Proof of u → • (v → + w → ) = u → • v → + u → • w → We'll begin with the three vectors, u → = (u 1 , u 2 , ...

Intergration, Functional and variations.Block III, Consider the functiona...

Functional and variations.Block III, Consider the functional S[y]=?_1^2 v(x^2+y'')dx , y(1)=0,y(2)=B Show that if ?=S[y+eg]-S[y], then to second order in e, ?=1/2 e?_1^2¦?g^'

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd