How to make equations of conics easier to read, Mathematics

Assignment Help:

How to Make Equations of Conics Easier to Read ?

If you want to graph a conic sections, first you need to make the equation easy to read. For example, say you have the equation

4x2 + 64 = 40x + 9y2 .
You know that it's a conic section, because it's second-degree- in fact, if you've read the rest of this chapter, you can even figure out that it's a hyperbola. But it's not obvious what the graph looks like. Where's the center for example?

To make this equation easier to read, we need to get rid of the first-degree terms, by completing the square!

For example, the term - 40 x is a first-degree term. Let's get rid of it. Move it over to the left with the other x term (while we're at it, we'll go ahead and move all the variable to the left):
4x2 - 40x - 9y2 = -64.
Important: factor out the coefficient of x2 (from the x terms only) before attempting to complete the square!

4(x2 -10x) - 9y2 =-64.
Now, complete the square inside the parentheses.

4(x2 - 10x)-9y2 = -64
4((x-5) 2 - 25) - 9y2 = -64

and re-distribute the 4 (pay special attention to the way the 4 gets distributed to the new constant, -25, created when we completed the square!).

4(x - 5) 2 - 100 - 9y2 = -64
Then combine the constant terms:

4(x - 5) 2 - 9y2 = 36.
For this equations, there's no need to complete the square for the y terms, because there is no first-degree y term. Now divide both sides by the constant term:

(x- 5)2/9 -y2 /4 = 1

and finally, take the square roots of the constant factors 9 and 4 to bring them under the square symbol:

(x-5/3)2 -(y/2)2 = 1 (1)

I know, I know! You're saying, "what in the world is all this for?!" Well, take a look at the result (equation 1). It's in a very simple form. There are only three terms. One of the terms has only the variable x and is squared; same for the variable y. The constant term is just 1. In fact, the equation has been made as close as possible to the equation of the "standard" hyperbola,

x2 - y2 = 1,

except for some translation and scaling factors. (The graph is translated in the x-direction a distance 5, and is scaled in the x and y directions by factors of 3 and 2 respectively. I'm deliberately not showing you the graph here, because I want you to look at the equations!)


Related Discussions:- How to make equations of conics easier to read

Tutor, how can i apply as tutor

how can i apply as tutor

Correlation coefficient, Correlation coefficient - These are numerical...

Correlation coefficient - These are numerical measures of the correlations existing between the independent and the dependent variables - These are better measures of corre

Initial conditions to find system of equations, Solve the subsequent IVP. ...

Solve the subsequent IVP. y′′ + 11y′ + 24 y = 0 y (0) =0  y′ (0)=-7  Solution The characteristic equation is as r 2 +11r + 24 = 0 ( r + 8) ( r + 3) = 0

Describe visualize solutions of simultaneous equations, Describe Visualize ...

Describe Visualize Solutions of Simultaneous Equations ? By drawing the graph of each equation in a system of equations, you can see a picture of the system's solutions. Fo

construct an isosceles triangle, 1. Construct an isosceles triangle whose ...

1. Construct an isosceles triangle whose base is 7cm and altitude 4cm and then construct another similar triangle whose sides are 1/2 times the corresponding sides of the isosceles

Marginal probability, Marginal Probability Probability of event A happe...

Marginal Probability Probability of event A happening, denoted by P(A), is called single probability, marginal or unconditional probability. Marginal or Uncondi

Calculate the average return, A department store faces a decision for a sea...

A department store faces a decision for a seasonal product for which demand can be high, medium or low. The purchaser can order 1, 2 or 3 lots of this product before the season beg

Translating word phrases into algebraic expressions, How do I solve this pr...

How do I solve this problem: Manuel is a cross-country runner for his school’s team. He jogged along the perimeter of a rectangular field at his school. The track is a rectangle th

#tiword problem proportions, The scale of a map is 0.5 in 25mi the actua...

The scale of a map is 0.5 in 25mi the actual distance between two cities is 725mi write a proportion that represents the relationship how far apart will the cities be on the map

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd