How to make equations of conics easier to read, Mathematics

Assignment Help:

How to Make Equations of Conics Easier to Read ?

If you want to graph a conic sections, first you need to make the equation easy to read. For example, say you have the equation

4x2 + 64 = 40x + 9y2 .
You know that it's a conic section, because it's second-degree- in fact, if you've read the rest of this chapter, you can even figure out that it's a hyperbola. But it's not obvious what the graph looks like. Where's the center for example?

To make this equation easier to read, we need to get rid of the first-degree terms, by completing the square!

For example, the term - 40 x is a first-degree term. Let's get rid of it. Move it over to the left with the other x term (while we're at it, we'll go ahead and move all the variable to the left):
4x2 - 40x - 9y2 = -64.
Important: factor out the coefficient of x2 (from the x terms only) before attempting to complete the square!

4(x2 -10x) - 9y2 =-64.
Now, complete the square inside the parentheses.

4(x2 - 10x)-9y2 = -64
4((x-5) 2 - 25) - 9y2 = -64

and re-distribute the 4 (pay special attention to the way the 4 gets distributed to the new constant, -25, created when we completed the square!).

4(x - 5) 2 - 100 - 9y2 = -64
Then combine the constant terms:

4(x - 5) 2 - 9y2 = 36.
For this equations, there's no need to complete the square for the y terms, because there is no first-degree y term. Now divide both sides by the constant term:

(x- 5)2/9 -y2 /4 = 1

and finally, take the square roots of the constant factors 9 and 4 to bring them under the square symbol:

(x-5/3)2 -(y/2)2 = 1 (1)

I know, I know! You're saying, "what in the world is all this for?!" Well, take a look at the result (equation 1). It's in a very simple form. There are only three terms. One of the terms has only the variable x and is squared; same for the variable y. The constant term is just 1. In fact, the equation has been made as close as possible to the equation of the "standard" hyperbola,

x2 - y2 = 1,

except for some translation and scaling factors. (The graph is translated in the x-direction a distance 5, and is scaled in the x and y directions by factors of 3 and 2 respectively. I'm deliberately not showing you the graph here, because I want you to look at the equations!)


Related Discussions:- How to make equations of conics easier to read

#tnumarancyitle.., what is classification and how can you teach it?

what is classification and how can you teach it?

Expected value, Expected Value For taking decisions under conditions of...

Expected Value For taking decisions under conditions of uncertainty, the concept of expected value of a random variable is used. The expected value is the mean of a probability

Mixing problems, Let's start things by searching for a mixing problem.  Pre...

Let's start things by searching for a mixing problem.  Previously we saw these were back in the first order section. In those problems we had a tank of liquid with several kinds of

QUANITATIVE METHODS, COMMENT ON QUANTITATIVE TECHNIQUES IS A SCIENTIFIC AND...

COMMENT ON QUANTITATIVE TECHNIQUES IS A SCIENTIFIC AND FOR ENHANCING CREATIVE AND JUDICIOUS CAPABILITIES OF A DECISION MAKER

Class mid points and class interval or width, Class Mid points This i...

Class Mid points This is very significant values which mark the center of a provided class. They are acquired by adding together the two limits of a provided class and dividi

What is the measure of its width if its length is 3 inches, The perimeter o...

The perimeter of a rectangle is 21 inches. What is the measure of its width if its length is 3 inches greater than its width? Let x = the width of the rectangle. Let x + 3 = th

Find out that vector are linearly dependent, Find out if the following set ...

Find out if the following set of vectors are linearly independent or linearly dependent. If they are linearly dependent get the relationship among them. Solution : Ther

Prove complement of element in boolean algebra is unique, Prove that, the c...

Prove that, the complement of each element in a Boolean algebra B is unique.     Ans:  Proof: Let I and 0 are the unit and zero elements of B correspondingly. Suppose b and c b

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd