Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
The tetrahedral arrangement of four ligands surrounding the metal ion may be visualized. It is clear that in tetrahedral field, none of the orbitals point exactly towards the ligands and therefore, the splitting of energy will be less that in octahedral field. The tree d-orbitals dxyand dyz and dzx are pointing close to the direction in which the ligands are approaching while the two orbitals and are lying in between the ligands. Therefore, the energies of the three orbitals will be raised while the energies of the two orbitals will be lowered. Thus, in the presence of octahedral field, the degeneracy of five d-orbitals splitting as: The two orbitals, and becomes stable and their energies are lowered. These are designated as 'e' orbitals. The three orbitals, dxy, dyz and dzx become unstable and their energies are raised. These are designated as 't2' orbitals. The magnitude of crystal field splitting is the difference between e and t2 orbitals and is designated as Δt, (the subscript indicating tetrahedral complexes). It is also measured in terms of Dq and Δt, = 10 Dq. If we compare the magnitude of crystal field splitting in octahedral and tetrahedral complexes (having same metal ion, ligands and metal ion-ligand distances), it has been observed that the crystal field splitting in octahedral complexes (Δt) is considerably less than in octahedral complexes (Δ0). It has been found to be Δt = 4/9 Δ0.There are two main reasons for the smaller value of crystal field splitting in tetrahedral than in octahedral complexes. In tetrahedral complexes there are four ligands while there are six ligands in octahedral complexes. Therefore, lesser ligands produce less crystal field splitting. The crystal field splitting in tetrahedral field is about two third of the octahedral field. In tetrahedral field, none of the orbitals is pointing directly towards the ligands and, therefore, splitting is less.Since the magnitude of crystal field splitting in tetrahedral field is quite small and is always less the pairing energy, therefore, the pairing of electrons will never be energetically favourable. Thus; all the tetrahedral complexes are high spin complexes. No tetrahedral complex with low spin has been found to exist.
Q. What are the primary source of energy ? Oils and fats form an integral part of the dietaries the world over. In the body they are the primary source of energy. As you know,
WHAT ARE SOLUBILITY?
I WANT FIGURE FOR POENTIONSTAATIC COULOMETRY
Q. Define shelf life? Shelf life is the time between the production and packaging of the product and the point at which it becomes unacceptable under defined environmental cond
Some enzymes require other associated molecules to work. These molecules are known as enzyme cofactors and they can be, for example, organic ions, like mineral salts, or organic mo
Nitrous acid (HNO2) is an unstable compound when prepared by the following reaction: HCl (g) + NaNO2 (s) ? HNO2 (l) + NaCl (s). As the product of the above reaction is unstable, t
uses of light waves in chemical areas
what is chemistry
Why does methyl ethanoate not give iodoform test while ethyl ethanoate does? Ans) Iodoform test for esters is the test given by its products on hydrolysis methyl ethanoate give
which is more acidic 3 floro pentonoic acid or 3 nitro pentonoic acid
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd