Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Q. With a circuit diagram explain how a transistor in common-base configuration amplify signals.
The common-base terminology is derived from the fact that the base is common to the input and output sides of the configuration. Also the base is the terminal closest to ,or at, ground potential. The input characteristics for a transistor in common base configuration can be obtained by plotting a graph with VBE as x-axis and IE as the y-coordinate at various levels of output voltage VCB. Also the output characteristics can be observed by plotting VCB along x-axis and IC along y-axis for various levels of IE.
The output or collector set of characteristics has three basic regions of interests : the active, cut-off and saturation regions. The active region is the region normally employed for linear (undistorted) amplifiers. In the active region the base-emitter junction is forward biased, while the collector-base junction is reverse-biased.
The signal to be amplified Vs is applied to the input leads, ie. between the emitter and the base. The electrons leaving the base take two paths. A small percentage combines with the holes in the base region and constitute the base current, while the majority of these diffuse towards the collector junction. The collector junction is reverse biased and these electrons can easily cross the junction and form the collector current. This collector current is allowed to pass through a high resistor connected in series with the collector. The voltage developed across the load resistor is the amplified output voltage.
The amount of collector current depend upon the recombination at the base, the smaller the recombination the larger the collector current. A small base current controls large collector current. If the base-emitter voltage is increased slightly, more electrons are injected into the base region, which will be more than the base can use (recombination). This results in a larger collector current. In short, a smallchange in the base voltage cause very large change in the collector current. This is current amplification. The large collector current passing through the load resistor produces high voltage across which will be several times greater than the small input voltage applied to the input.
radiation pattern optimization of a planar array antenna using BBO
Q. Use necessary circuit and waveforms to explain the working of a Bootstrap sweep generator The bootstrap circuit illustrated in figure given below is a commonly used method f
Q. The two-wattmeter method for measuring three-phase power is applied on a balanced wye-connected load, and the readings are given by W C = 836W and W A = 224 W If the system
Explain Series capacitors These are connected in series with the line conductors and are used to reduce the inductive reactance of long transmission lines and hence the voltage
WHOLE COIL WINDING
Compute the induced emf: If a coil of 150 turns is linked with a flux of 0.01 wb while carrying a current of 10 Amp, compute the inductance of coil. Now, if current is reverse
Forward Voltage Triggering If V a is increased the collector to emitter voltages of both transistor are also increased. Hence the leakage current at J 2 increase. This
Charge and Electric Force The proton has a charge of +1.602 10 -19 coulombs (C), while the electron has a charge of -1.602 × 10 -19 C. The neutron has zero charge. Electric c
The ampere has been defined (by the International Committee of Weights and Measures in 1946) as the current flowing in two long parallel wires 1 metre apart that produces a force o
how do you define the expertise for this hot line maintenance?
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd