Homogeneous coordinate systems - 2-d and 3-d transformations, Computer Graphics

Assignment Help:

Homogeneous Coordinate Systems - 2-d and 3-d transformations

Suppose P(x,y) be any point in 2-D Euclidean (Cartesian) system. In HC System, we add a third coordinate to a point. In place of (x,y), all points are represented via a triple (x,y,H) where H≠0;  along with the condition which is (x1,y1,H1)=(x2,y2,H2) ↔ x1/H1 = x2/H2 ; y1/H1 = y2/H2.

Currently, if we take H=0, then we contain point at infinity, that is, generation of horizons.

Hence, (2, 3, 6) and (4, 6, 12) are the similar points are represented by various coordinate triples, that is each point has many diverse Homogeneous Coordinate representation.

2-D Euclidian System                    Homogeneous Coordinate System

Any point (x,y)                                  (x,y,1)

 

If (x,y,H) be any point in HCS(such that H≠0); Then (x,y,H)=(x/H,y/H,1)

(x/H,y/H)                          (x,y,H)

Currently, we are in the position to build the matrix form for the translation along with the utilization of homogeneous coordinates.For translation transformation (x,y)→(x+tx,y+ty) within Euclidian system, here tx and ty both are the translation factor in direction of x and y respectively. Unfortunately, this manner of illustrating translation does not utilize a matrix; consequently it cannot be combined along with other transformations by easy matrix multiplication. That type of combination would be desirable; for illustration, we have observed that rotation about an arbitrary point can be done via a rotation, a translation and the other translation. We would like to be capable to combine these three transformations in a particular transformation for the sake of elegance and efficiency. One way of doing such, is to utilize homogeneous coordinates. In homogeneous coordinates we utilize 3x3 matrices in place of 2x2, initiating an additional dummy coordinate H. In place of (x,y), each point is demonstrated by a triple (x,y,H) here H≠0; In two dimensions the value of H is generally set at 1 for simplicity.

Hence, in homogeneous coordinate systems (x,y,1) → (x+tx,y+ty,1), now, we can simplifies this in matrix form like:

1389_Homogeneous Coordinate Systems - 2-d and 3-d transformations.png


Related Discussions:- Homogeneous coordinate systems - 2-d and 3-d transformations

#BLA, #BLA for slope greater and equal to 1

#BLA for slope greater and equal to 1

Enumerate the use of data goggles- virtual reality, Enumerate the use of Da...

Enumerate the use of Data goggles- Virtual Reality Data goggles/helmets - These use optical systems and display screens which send 3D images to the eyes. Motion sensors mea

Animated gif, Animated GIF: For combining various GIF images in a particul...

Animated GIF: For combining various GIF images in a particular file to create animation, GIF file format is used. There are several drawbacks to such functionality. The form

Distinguish between convex and concave polygons, Distinguish between convex...

Distinguish between convex and concave polygons? If the line joining any two points in the polygon lies totally inside the polygon then, they are called as convex polygons. If

Unity, what I unity of java game?

what I unity of java game?

Film recorders - graphics hardware, Film Recorders - graphics hardware ...

Film Recorders - graphics hardware It is a graphical output device for transferring digital images to photographic films. The easiest film recorders classically work through

Scale a sphere cantered on the point (1, Scale a sphere cantered on the poi...

Scale a sphere cantered on the point (1, 2, and 3) with radius 1, so that the new sphere has the same centre with radius 2.    Solution: Translate the sphere so that its centre

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd