Homogeneous coordinate systems - 2-d and 3-d transformations, Computer Graphics

Assignment Help:

Homogeneous Coordinate Systems - 2-d and 3-d transformations

Suppose P(x,y) be any point in 2-D Euclidean (Cartesian) system. In HC System, we add a third coordinate to a point. In place of (x,y), all points are represented via a triple (x,y,H) where H≠0;  along with the condition which is (x1,y1,H1)=(x2,y2,H2) ↔ x1/H1 = x2/H2 ; y1/H1 = y2/H2.

Currently, if we take H=0, then we contain point at infinity, that is, generation of horizons.

Hence, (2, 3, 6) and (4, 6, 12) are the similar points are represented by various coordinate triples, that is each point has many diverse Homogeneous Coordinate representation.

2-D Euclidian System                    Homogeneous Coordinate System

Any point (x,y)                                  (x,y,1)

 

If (x,y,H) be any point in HCS(such that H≠0); Then (x,y,H)=(x/H,y/H,1)

(x/H,y/H)                          (x,y,H)

Currently, we are in the position to build the matrix form for the translation along with the utilization of homogeneous coordinates.For translation transformation (x,y)→(x+tx,y+ty) within Euclidian system, here tx and ty both are the translation factor in direction of x and y respectively. Unfortunately, this manner of illustrating translation does not utilize a matrix; consequently it cannot be combined along with other transformations by easy matrix multiplication. That type of combination would be desirable; for illustration, we have observed that rotation about an arbitrary point can be done via a rotation, a translation and the other translation. We would like to be capable to combine these three transformations in a particular transformation for the sake of elegance and efficiency. One way of doing such, is to utilize homogeneous coordinates. In homogeneous coordinates we utilize 3x3 matrices in place of 2x2, initiating an additional dummy coordinate H. In place of (x,y), each point is demonstrated by a triple (x,y,H) here H≠0; In two dimensions the value of H is generally set at 1 for simplicity.

Hence, in homogeneous coordinate systems (x,y,1) → (x+tx,y+ty,1), now, we can simplifies this in matrix form like:

1389_Homogeneous Coordinate Systems - 2-d and 3-d transformations.png


Related Discussions:- Homogeneous coordinate systems - 2-d and 3-d transformations

Transformation, Define transformation. Explain all basic transformation

Define transformation. Explain all basic transformation

Features for good 3-dimentional modeling , Features for good 3-Dimentional ...

Features for good 3-Dimentional modeling software are as: Multiple windows which permit you to view your model in each dimension. Capability to drag and drop primitive

Explain advantages of rendering polygons by scan line method, What are the ...

What are the advantages of rendering polygons by scan line method?  i. The max and min values of the scan were simply found.  ii. The intersection of scan lines with edges i

For orthographic parallel projection, For orthographic parallel projection:...

For orthographic parallel projection:    glOrtho(left, right, bottom, top, near, far);  glOrtho2D(left, right, bottom, top);    Here left, right define the x-direction ex

Modal create, morgen wants to sign up for an account on doggobook, the worl...

morgen wants to sign up for an account on doggobook, the world''s thrid - best social network for dog enthusiasts. she enters her email address and a password into the sign-up form

Various cases of cohen sutherland line clippings - algorithm, Various cases...

Various cases of Cohen Sutherland Line Clippings Currently, we study how this clipping algorithm works. For the sake of simplicity we will tackle all the cases with the assist

Design a graphical user interface, 1. Implement proper exception handling m...

1. Implement proper exception handling mechanism for this application. 2. Display all data a. Search specific data (depending of the user selection, your application should e

Clip a line segment - cyrus beck line clipping algorithm, How does the Cyru...

How does the Cyrus Beck line clipping algorithm, clip a line segment whether the window is non convex? Solution : see the following figure 13, now the window is non-convex in s

Important points about the surface of revolution, Important points about th...

Important points about the Surface of Revolution a) if a point on base curve is given by parametric form, that are: (x(u), y(u), z(u)) so surface of revolution regarding to th

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd