Homogeneous coordinate systems - 2-d and 3-d transformations, Computer Graphics

Assignment Help:

Homogeneous Coordinate Systems - 2-d and 3-d transformations

Suppose P(x,y) be any point in 2-D Euclidean (Cartesian) system. In HC System, we add a third coordinate to a point. In place of (x,y), all points are represented via a triple (x,y,H) where H≠0;  along with the condition which is (x1,y1,H1)=(x2,y2,H2) ↔ x1/H1 = x2/H2 ; y1/H1 = y2/H2.

Currently, if we take H=0, then we contain point at infinity, that is, generation of horizons.

Hence, (2, 3, 6) and (4, 6, 12) are the similar points are represented by various coordinate triples, that is each point has many diverse Homogeneous Coordinate representation.

2-D Euclidian System                    Homogeneous Coordinate System

Any point (x,y)                                  (x,y,1)

 

If (x,y,H) be any point in HCS(such that H≠0); Then (x,y,H)=(x/H,y/H,1)

(x/H,y/H)                          (x,y,H)

Currently, we are in the position to build the matrix form for the translation along with the utilization of homogeneous coordinates.For translation transformation (x,y)→(x+tx,y+ty) within Euclidian system, here tx and ty both are the translation factor in direction of x and y respectively. Unfortunately, this manner of illustrating translation does not utilize a matrix; consequently it cannot be combined along with other transformations by easy matrix multiplication. That type of combination would be desirable; for illustration, we have observed that rotation about an arbitrary point can be done via a rotation, a translation and the other translation. We would like to be capable to combine these three transformations in a particular transformation for the sake of elegance and efficiency. One way of doing such, is to utilize homogeneous coordinates. In homogeneous coordinates we utilize 3x3 matrices in place of 2x2, initiating an additional dummy coordinate H. In place of (x,y), each point is demonstrated by a triple (x,y,H) here H≠0; In two dimensions the value of H is generally set at 1 for simplicity.

Hence, in homogeneous coordinate systems (x,y,1) → (x+tx,y+ty,1), now, we can simplifies this in matrix form like:

1389_Homogeneous Coordinate Systems - 2-d and 3-d transformations.png


Related Discussions:- Homogeneous coordinate systems - 2-d and 3-d transformations

Polygon representation methods - space partitioning, Polygon representation...

Polygon representation methods - Space Partitioning Representations Space partitioning representations: this type of representation is used for explain the interior pr

How we create virtual reality images for use on a computers, How we create ...

How we create virtual reality images for use on a computer system When a virtual tour of, for instance, a house is shown on a website the images need to be first created and th

Area-subdivision method-computer graphics, Normal 0 false fal...

Normal 0 false false false EN-US X-NONE X-NONE

Forensics-applications for computer animation, Forensics: Accidents occur ...

Forensics: Accidents occur every minute. Very frequently, there are no witnesses except for the individuals concerned in the accident or worse yet, there are no surviving witnesse

Operation reseach, #question. Steps involved in the solution of operation r...

#question. Steps involved in the solution of operation research problem

Composite transformations - 2-d and 3-d transformations, Composite Transfor...

Composite Transformations - 2-d and 3-d Transformations We can build complicated transformations as rotation regarding to an arbitrary point, mirror reflection about a line, a

Convert the intensity value of the current pixel, Step1:  Read a text file ...

Step1:  Read a text file which we want to hide. Step2:  Transform it into an array of its binary value. Step3: Transform this array into its equivalent one dimensional array

List of 3-d animation software, List of 3-D Animation Software Here is ...

List of 3-D Animation Software Here is a short list of several 3-D animation software are - Softimage ( Microsoft) -  Alias/Wavefront ( SGI) -  3D studia MAX (Autodesk

Explain difference between impact and non-impact printers, What is the diff...

What is the difference between impact and non-impact printers?  Impact printer press produced character faces against an inked ribbon on to the paper. A line printer and dot-ma

Rotation about an arbitrary axis, Rotation about an arbitrary axis Rota...

Rotation about an arbitrary axis Rotation about an arbitrary axis is a composition of several rotations and translation operations. What you need to do is the following:  a)

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd