Hill-climbing algorithm, Advanced Statistics

Assignment Help:

Hill-climbing algorithm is an algorithm which is made in use in those techniques of cluster analysis which seek to find the partition of n individuals into g clusters by optimizing some numerical index of the clustering. Since it is not possible to consider every partition of n individuals into g groups (because of the enormous number of the partitions), the algorithm starts with some given initial partition and considers individuals in turn for moving into the other clusters, creating the move if it causes an improvement in the value of the clustering index. The procedure is continued until no move of the single individual causes an improvement.


Related Discussions:- Hill-climbing algorithm

Complier average causal effect (cace), Complier average causal effect (CACE...

Complier average causal effect (CACE): The treatment effect amid true compliers in the clinical trial. For the suitable response variable, the CACE is given by the difference in o

Analysis of variance, Thomas Economic Forecasting, Inc. and Harmon Economet...

Thomas Economic Forecasting, Inc. and Harmon Econometrics have the same mean error in forecasting the stock market over the last ten years. However, the standard deviation for Thom

Buffon''s needle problem, Buffon's needle problem : A problem proposed and ...

Buffon's needle problem : A problem proposed and solved by the scientist Comte de Buffon in 1777 which includes determining the probability, p, which a needle of length l will inte

Bayesian inference, Bayesian inference : An approach to the inference based...

Bayesian inference : An approach to the inference based largely on Bayes' Theorem and comprising of the below stated principal steps: (1) Obtain the likelihood, f x q describing

Parks test, The Null Hypothesis - H0: β 1 = 0 i.e. there is homoscedastici...

The Null Hypothesis - H0: β 1 = 0 i.e. there is homoscedasticity errors and no heteroscedasticity exists The Alternative Hypothesis - H1: β 1 ≠ 0 i.e. there is no homoscedasti

G, sfdgfdg

sfdgfdg

Multi co linearity, Multi co linearity is the term used in the regression ...

Multi co linearity is the term used in the regression analysis to indicate situations where the explanatory variables are related by a linear function, making the inference of the

Expectaton, sales per day for a product are as follows: x= 10, 11, 12, 13 (...

sales per day for a product are as follows: x= 10, 11, 12, 13 (p)= 0.2, 0.4, 0.3, 0.1 obtain mean and variance of daily sale. if the profit is described by the following equation p

Conditional logistic regression, Conditional logistic regression : The form...

Conditional logistic regression : The form of logistic regression designed to work with the clustered data, such as data including matched pairs of the subjects, in which subject-s

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd