Hill-climbing algorithm, Advanced Statistics

Assignment Help:

Hill-climbing algorithm is an algorithm which is made in use in those techniques of cluster analysis which seek to find the partition of n individuals into g clusters by optimizing some numerical index of the clustering. Since it is not possible to consider every partition of n individuals into g groups (because of the enormous number of the partitions), the algorithm starts with some given initial partition and considers individuals in turn for moving into the other clusters, creating the move if it causes an improvement in the value of the clustering index. The procedure is continued until no move of the single individual causes an improvement.


Related Discussions:- Hill-climbing algorithm

Cauchy distribution, Cauchy distribution : The probability distribution, f ...

Cauchy distribution : The probability distribution, f (x), can be given as follows   where α is the position of the parameter (median) and the beta β a scale parameter. Moments

Compound symmetry, Compound symmetry : The property possessed by the varian...

Compound symmetry : The property possessed by the variance-covariance matrix of the set of multivariate data when its chief diagonal elements are equal to each other, and in additi

Explain human height growth curves, Human height growth curves : The growth...

Human height growth curves : The growth of human height is, in common, remarkably regular, apart from the pubertal growth spurt. The satisfactory longitudinal development curve is

Marginal matching, Marginal matching is the matching of the treatment grou...

Marginal matching is the matching of the treatment groups in terms of means or other summary characteristics of matching variables. This has been shown to be almost as efficient a

Breusch-pagan test, The Null Hypothesis - H0:  There is no heteroscedastici...

The Null Hypothesis - H0:  There is no heteroscedasticity i.e. β 1 = 0 The Alternative Hypothesis - H1:  There is heteroscedasticity i.e. β 1 0 Reject H0 if Q = ESS/2  >

EDUC 606, The GRE has a combined verbal and quantitative mean of 1000 and a...

The GRE has a combined verbal and quantitative mean of 1000 and a standard deviation of 200.

Confounding, Confounding:  A procedure observed in some factorial designs ...

Confounding:  A procedure observed in some factorial designs in which it is impossible to differentiate between some main effects or interactions, on the basis of the particular d

Likelihood, Likelihood is the probability of a set of observations provide...

Likelihood is the probability of a set of observations provided the value of some parameter or the set of parameters. For instance, the likelihood of the random sample of n observ

Explain remedian, Remedian: The robust estimator of location which is comp...

Remedian: The robust estimator of location which is computed by an iterative process. By assuming that the sample size n can be written as bk where b and k are the integers, the s

Explain Grade of membership model, Grade of membership model: This is the ...

Grade of membership model: This is the general distribution free method for the clustering of the multivariate data in which only categorical variables are included. The model ass

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd