Highest common factor (hcf), Mathematics

Assignment Help:

We know that a factor is a quantity which divides the given quantity without leaving any remainder. Similar to LCM above we can find a highest common factor (HCF) of the given numbers. Let us look at its definition first. The highest common factor is a quantity obtained from the given quantities and which divides each of them without leaving a remainder. We understand this by taking an example.

Example 

Find the HCF of 49 and 63.

The factors of 49 are 1, 7 and itself. The factors of 63 are 1, 3, 7, 9, 21 and itself. The common factors are 1 and 7. The highest of these is 7, which is the HCF we require.

This is one of the methods to obtain the HCF. This method may prove tedious if we are given bigger numbers and more of them. When such quantities are given, we follow division method as shown below (this method is shown for numbers in the above example).

In this method the first step constitutes dividing the larger quantity by the smaller quantity and subtract it as shown to obtain a remainder (it is not necessary that we ought to get a remainder in all the cases). Then the divisor, 49 (in our case, 49 is the divisor and 63 the dividend, 1 the quotient and 14, the remainder) becomes the dividend and the remainder (14) which we obtained earlier becomes the divisor. We continue doing this until the remainder is 0 as shown below. The last divisor is our HCF.

                                    49) 63 (1
                                          49
                                       ---------
                                         14) 49 (3
                                               42
                                          --------
                                          7) 14 (2
                                              14
                                            -----
                                              0

That is, 7 is the HCF of the numbers 49 and 63.

Now let us consider three quantities and obtain the HCF for them.


Related Discussions:- Highest common factor (hcf)

Differentiate inverse tangent functions, Differentiate the following functi...

Differentiate the following functions. (a) f (t ) = 4 cos -1 (t ) -10 tan -1 (t ) (b)  y = √z sin -1 ( z ) Solution (a) Not much to carry out with this one other

What are factor trees explain, What are Factor Trees explain? In algebr...

What are Factor Trees explain? In algebra, we often need to factor a number into its prime factors. One way to do this is to use a factor tree. This is a network of numbers, st

L''hospital''s rule, L'Hospital's Rule Assume that we have one of the g...

L'Hospital's Rule Assume that we have one of the given cases, where a is any real number, infinity or negative infinity.  In these cases we have, Therefore, L'H

Fractions, How do you add 7/9 + 6/8 + 3/4

How do you add 7/9 + 6/8 + 3/4

#title.automotive cruise control system., What are some of the interestingm...

What are some of the interestingmodern developments in cruise control systems that contrast with comparatively basic old systems

Determine if following sequences are monotonic or bounded, Determine if the...

Determine if the following sequences are monotonic and/or bounded. (a)   {-n 2 } ∞ n=0 (b) {( -1) n+1 } ∞ n=1 (c) {2/n 2 } ∞ n=5 Solution {-n 2 } ∞ n=0

.fractions, what is the difference between North America''s part of the tot...

what is the difference between North America''s part of the total population and Africa''s part

Equation of line which perpendicular to the given line, Perpendicular to th...

Perpendicular to the line given by 10 y + 3x= -2 For this part we desire the line to be perpendicular to 10 y + 3x= -2 & so we know we can determine the new slope as follows,

Solid mensuration, what is the importance of solid mensuration?

what is the importance of solid mensuration?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd