High carbon tool steels, Mechanical Engineering

Assignment Help:

High Carbon Tool Steels

Tools are implements such are employed to shape, cut or deform other materials. They are largely made in steel, although other alloys have also been improved. The usual tool steels have C, W, Cr, Mo, V, Mn, and Si in the range of 0.6 to 1.0%. They have hardness and wear resistance. For shock resistance C is limited to 0.5%. W and Mo in between 2 to 18% offer high temperature strength. V in between 0.1 to 2% improves harden-ability whilst Si adds to toughness.

Though the tool and die steels are not generates in as large amount like other steels are, still they are industrially very significant. A variety of steel differing broadly in composition and treatment is utilized for varying reasons. They are employed in such operations as cutting, rolling, shearing and forming. These operations need adequate hardness, toughness, strength wear resistance and heat resistance. For a lot of reasons near-eutecoid and hyper-eutectoid steels have been employed for metal cutting but these plain carbon steels have tendency to lose hardness through tempering while rise in temperature arises during cutting. To overcome such problem high steep tool steel have been improved. The 18.4.1 category of high steel contains 18% W, 4% Cr and 1% V. These steels retain adequate hardness because of carbide formation that is a complex compound Fe4W2C. A tough matrix is provided via Cr. These steel might retain hardness upto a temperature of 500oC.

While 5-12% of cobalt is also added, in addition, the hardness throughout a secondary hardening procedure is increased at temperature around 600oC.


Related Discussions:- High carbon tool steels

Explain the primitive instancing, Primitive Instancing In primitive ins...

Primitive Instancing In primitive instancing, the modeling system defines a set of primitive 3D solid shapes that are relevant to the application area. Primitive instances are

Solve equation by gauss elimination method, Solve the following equation by...

Solve the following equation by Gauss elimination Method : 2x + y + z = 10, 3x + 2y + 3z = 18; x +4y +9z = 16 Solve by Gauss-Seidal iteration method: 20x + y - 2z = 17; 3x

Estimate the rate of flow, At a sudden enlargement of a water main from 240...

At a sudden enlargement of a water main from 240 mm to 480 mm diameter, the hydraulic gradient rises by 10 mm. Estimate the rate of flow.

Electromagnetic conversion device with example., Q.  In every electromagne...

Q.  In every electromagnetic conversion device, both generator and motor action take place simultaneously. Explain. The case the output is mechanical as in a motoring mode, th

Calculate the angular deflection produced in a solid , Calculate the angula...

Calculate the angular deflection (in degrees) produced in a solid circular shaft of diameter 12.5mm and length 0.5 m when the shear stress is 25MPa and the shear modulus 70GPa. Wha

Design of the plc ladder and profibus - asi network, 1 Prepare an updated s...

1 Prepare an updated sketch of the electro-hydraulic system shown in Figure showing the actuators in their start position appropriate to your allocated actuator sequence. 2 By u

Strength of Materials, Determine formula for Elongnation of body due to it'...

Determine formula for Elongnation of body due to it''s Self Weight

The ordinate dimension command-autocad, The Ordinate Dimension Command ...

The Ordinate Dimension Command We can use The Ordinate command to annotate co-ordinate points with X or Y values. This might be useful for setting-out on site plans.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd