Help with word problem, Mathematics

Assignment Help:
You would like to have $4000 in four years for a special vacation following graduation by making deposits at the end of every 6 months in an annuity that pays 7% compounded semiannually.
A. How much should you deposit at the end of every six months?


B. How much of the $4000 comes from deposits and how much comes from interest?

Related Discussions:- Help with word problem

Definition of infinite limits, Infinite limits : Let's now move onto the d...

Infinite limits : Let's now move onto the definition of infinite limits. Here are the two definitions which we have to cover both possibilities, limits which are positive infinity

Arc length for parametric equations, Arc Length for Parametric Equations ...

Arc Length for Parametric Equations L = ∫ β α √ ((dx/dt) 2 + (dy/dt) 2 ) dt Note: that we could have utilized the second formula for ds above is we had supposed inste

One step ahead, how do we figure it out here is an example 3,4,6,9,_,_,_,_...

how do we figure it out here is an example 3,4,6,9,_,_,_,_,_,. please help

Prove the equality of axiom choice, (1) Prove that Zorn's lemma is equivale...

(1) Prove that Zorn's lemma is equivalent to axiom of choice. (2) Use Zorn's Lemma to prove the existence of E.

How much did sally earn if she worked 48 hours, Sally gets paid x dollars p...

Sally gets paid x dollars per hour for a 40-hour work week and y dollars for every hour she works over 40 hours. How much did Sally earn if she worked 48 hours? Since she worke

How long will it take her to save $350, Each week Jaime saves $25. How long...

Each week Jaime saves $25. How long will it take her to save $350? Divide $350 by $25; 350 ÷ 25 = 14 weeks.

Demand Forecast, How should shoppers Stop develop its demand forecasts?

How should shoppers Stop develop its demand forecasts?

Integers , (-85) from (-21) and explain me

(-85) from (-21) and explain me

Differential equation - maple, 1. Consider the following differential equat...

1. Consider the following differential equation with initial conditions: t 2 x'' + 5 t x' + 3 x = 0, x(1) = 3, x'(1) = -13. Assume there is a solution of the form: x (t) = t

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd