Heap sort, Data Structure & Algorithms

Assignment Help:

We will start by defining a new structure called Heap. Figure 3 illustrates a Binary tree.

1345_Heap Sort.png

Figure: A Binary Tree

A complete binary tree is said to assure the 'heap condition' if the key of each node is greater than or equal to the key in its children. Therefore the root node will have the biggest key value.

Trees can be represented such as arrays, by first numbering the nodes (beginning from the root) from left to right. Then the key values of the nodes are assigned to array positions whose index is specified by the number of the node. For example, the corresponding array is depicted in Figure

444_Heap Sort.png

                                  Figure: Array for the binary tree of figure

The relationships of a node can also be found out from this array representation. If a node is at position of j, its children will be at positions 2j & 2j + 1. Its parent will be at position +J/2+.

Assume the node M. It is at position 5. Therefore, its parent node is at position

5/2+ = 2 that means the parent is R. Its children are at positions 2 × 5 & (2 × 5) + 1, that means 10 + 11 respectively that means E & I are its children.

A Heap is a complete binary tree, wherein each node satisfies the heap condition, represented as an array.

Now we will study the operations possible over a heap and see how these can be combined to produce a sorting algorithm.

The operations on a heap work into 2 steps.

1. The needed node is inserted/deleted/or replaced.

2. The above operation may cause violation of the heap condition thus the heap is traversed and modified to rectify any such kind of violations.

Examples: Assume the insertion of a node R in the heap 1.

1. Initially R is added as the right child of J & given the number 13.

2. However, R > J. hence, the heap condition is violated.

3. Move R up to position six & move J down to position thirteen.

4. R > P. thus, the heap condition is violated still.

5. Swap R & P.

4. Now the heap condition is satisfied by all nodes to get the heap of Figure

629_Heap Sort1.png

624_Heap Sort2.png

Figure: A Heap

This algorithm is guaranteed to sort n elements within (n log2n) time.

First we will see two methods of heap construction and then elimination in order from the heap to sort the list.

1. Top down heap construction

           • Add items into an initially empty heap, satisfying the heap condition at all steps.

2. Bottom up heap construction

            • Build a heap along the items in the order presented.

            • From the right most nodes modify to satisfy the heap condition. We will reveal this with an example.

 Example: construct a heap of the following using top down approach for heap construction.

                                        PROFESSIONAL

Figure illustrates different steps of the top down construction of the heap.

888_Heap Sort3.png

Figure: Heap Sort (Top down Construction)

Example: The input file is (2,3,81,64,4,25,36,16,9, 49). While the file is interpreted as a binary tree, it results in Figure. Another Figure shows the heap.

666_Heap Sort4.png

Figure: A Binary tree                   Figure: Heap of figure

Given figure illustrates several steps of the heap of above Figure as the sorting takes place.


Related Discussions:- Heap sort

Stack, write pseudocode to implement a queue with two stacks

write pseudocode to implement a queue with two stacks

Perfect matching polytope ppm, Let G=(V,E) be a graph for which all nodes h...

Let G=(V,E) be a graph for which all nodes have degree 5 and where G is 5-edge is connected. a) Show that the vector x which is indexed by the edges E and for which xe = 1/5 for

Differentiate between nonpersistent and 1-persistent, Differentiate between...

Differentiate between Nonpersistent and 1-persistent Nonpersistent: If the medium is idle, transmit; if the medium is busy, wait an amount of time drawn from a probability dist

Searhing and sorting algorithms, how I can easily implement the bubble,sele...

how I can easily implement the bubble,selection,linear,binary searth algorithms?

Binary search tree bst, Describe Binary Search Tree (BST)? Make a BST for t...

Describe Binary Search Tree (BST)? Make a BST for the given sequence of numbers. 45, 36, 76, 23, 89, 115, 98, 39, 41, 56, 69, 48 Traverse the obtained tree in Preorder, Inord

Create algorithm for similarities between documents, Here is a diagram show...

Here is a diagram showing similarities between documents; this is an actual set of physics lab assignments from a large university. Each node (square) in the graph is a doc

How can the third dimension be displayed on the screen, How can the third d...

How can the third dimension be displayed on the screen The main problem in visualization is the display of three-dimensional objects and scenes on two-dimensional screens. How

What is efficiency of algorithm, What is Efficiency of algorithm? Effic...

What is Efficiency of algorithm? Efficiency of an algorithm can be precisely explained and investigated with mathematical rigor.  There are two types of algorithm efficiency

B-TREE and AVL tree diffrance, Explain process of B-TREE and what differen...

Explain process of B-TREE and what difference between AVL Tree Using Algorithms

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd