Harmonic progression (h.p.), Mathematics

Assignment Help:

Three quantities a, b and c are said to be in harmonic progression if,

2192_harmonic progresssion.png

In this case we observe that we have to consider three terms in order to conclude whether they are in harmonic progression or not.

An important proposition in this case is that the reciprocal of quantities in harmonical progression are in arithmetical progression. Let us understand this by considering three quantities a, b and c. By definition, if a, b and c are in harmonic progression then they satisfy the condition that

2192_harmonic progresssion.png

By cross multiplying, we obtain

                   a(b - c) = c(a - b)

That is,      ab - ac = ac - bc  

Dividing each of these terms by abc, we have

972_harmonic progression.png

This can be written as

722_harmonic progression1.png

Canceling the common terms, we have

378_harmonic progression2.png

This gives us the common difference between the reciprocal terms of a, b and c. This also proves our proposition.


Related Discussions:- Harmonic progression (h.p.)

Show inverse trigonometric functions, Q. Show Inverse Trigonometric Functio...

Q. Show Inverse Trigonometric Functions? Ans. Many functions, including trig functions, are invertible. The inverse of trig functions are called ‘inverse trig functions'.

Determine the area of the matting, A circular print is being matted in a sq...

A circular print is being matted in a square frame. If the frame is 18 in by 18 in, and the radius of the print is 7 in, what is the area of the matting? (π = 3.14) a. 477.86 in

Determine solutions to the given equation or inequality, Illustrates that t...

Illustrates that the following numbers aren't solutions to the given equation or inequality. y = -2 in 3( y + 1) = 4 y - 5 Solution In this case in essence we do the sam

Taylor series - sequences and series, Taylor Series - Sequences and Series ...

Taylor Series - Sequences and Series In the preceding section we started looking at writing down a power series presentation of a function.  The difficulty with the approach

Circumcircle problem, find the radius of circumcircle of an equilateral tri...

find the radius of circumcircle of an equilateral triangle of 6root3 one side.

Theorem of continuous functions, Consider the subsequent IVP. y' = f(t,y...

Consider the subsequent IVP. y' = f(t,y) ,        y(t 0 ) = y 0 If f(t,y) and ∂f/∂y are continuous functions in several rectangle a o - h o + h which is included in a

Radius of convergence - sequences and series, Radius of Convergence We ...

Radius of Convergence We will be capable to illustrate that there is a number R so that the power series will converge for, |x - a| R.  This number is known as the radius of

Poisson probability distribution, Poisson Probability Distribution -  ...

Poisson Probability Distribution -  It is a set of probabilities which is acquired for discrete events which are described as being rare. Occasions similar to binominal distri

Explain basic geometric concepts, Explain Basic Geometric Concepts ? P...

Explain Basic Geometric Concepts ? Points, lines, and planes are the most fundamental concepts in the study of geometry. Points A point has no length, width or heig

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd