Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Three quantities a, b and c are said to be in harmonic progression if,
In this case we observe that we have to consider three terms in order to conclude whether they are in harmonic progression or not.
An important proposition in this case is that the reciprocal of quantities in harmonical progression are in arithmetical progression. Let us understand this by considering three quantities a, b and c. By definition, if a, b and c are in harmonic progression then they satisfy the condition that
By cross multiplying, we obtain
a(b - c) = c(a - b)
That is, ab - ac = ac - bc
Dividing each of these terms by abc, we have
This can be written as
Canceling the common terms, we have
This gives us the common difference between the reciprocal terms of a, b and c. This also proves our proposition.
find the points on y axis whose distances from the points A(6,7) and B(4,-3) are in the ratio 1:2
describe the end behavior of the following function using Limit notation f(x)= 2x-1/x-1
Determine if the following sequences converge or diverge. If the sequence converges find out its limit. a. {3n 2 - 1 / 10n + 5n 2 } ∞ n =2 b. {e 2n / n} ∞ n =1 c
lim n tends to infintiy ( {x} + {2x} + {3x}..... +{nx}/ n2(to the square) )where {X} denotes the fractional part of x? Ans) all no.s are positive or 0. so limit is either positive
Integrate ((cosx)*(sinx))/(sin(2x)) with respect to x
Decision making under uncertainty Various methods are used to make decision in circumstances whereas only the pay offs are identified and the likelihood of every state of natur
What is the greatest common factor of 24 and 64? List the factors of 24 and 64. The largest factor that they have in common is the greatest common factor. Factors of 24: 1,
do you have a decimal place value chart
Proof of: ∫ f(x) + g(x) dx = ∫ f(x) dx + ∫g(x) dx It is also a very easy proof. Assume that F(x) is an anti-derivative of f(x) and that G(x) is an anti-derivative of
Question Solve the following functions for x (where x is a real number). Leave your answers in exact form, that is, do not use a calculator, show all working. (a) 3 x 3 x2 3
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd